【題目】如圖,在中, 為直角, .沿的中位線,將平面折起,使得,得到四棱錐.
(Ⅰ)求證: 平面;
(Ⅱ)求三棱錐的體積;
(Ⅲ)是棱的中點(diǎn),過(guò)做平面與平面平行,設(shè)平面截四棱錐所得截面面積為,試求的值.
【答案】(Ⅰ)見(jiàn)解析;(Ⅱ);(Ⅲ).
【解析】【試題分析】(1)依據(jù)題設(shè)條件,借助線面垂直的判定定理分析推證;(2)先確定三棱錐的高,再運(yùn)用三棱錐的體積公式求解;(3)先確定截面的位置,再分析探求截面的面積:
(Ⅰ)證明:因?yàn)?/span>,且,
所以,同時(shí),
又,所以面.
又因?yàn)?/span>,所以平面.
(Ⅱ)由(Ⅰ)可知: 平面,又平面,
所以,
又因?yàn)?/span>,所以.
又因?yàn)?/span>,所以平面.
所以, .
依題意, .
所以, .
(Ⅲ)分別取的中點(diǎn),并連接,
因?yàn)槠矫?/span>平面,所以平面與平面的交線平行于,因?yàn)?/span>是中點(diǎn),所以平面與平面的交線是的中位線.同理可證,四邊形是平面截四棱錐的截面.
即: .
由(Ⅰ)可知: 平面,所以,
又∵, ∴.
∴四邊形是直角梯形.
在中, ∴.
, , .
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或作品獲得一等獎(jiǎng)”;
乙說(shuō):“作品獲得一等獎(jiǎng)”;
丙說(shuō):“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;
丁說(shuō):“是作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)某班主任對(duì)全班50名學(xué)生學(xué)習(xí)積極性和參加社團(tuán)活動(dòng)情況進(jìn)行調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如表1所示
表1
參加社團(tuán)活動(dòng) | 不參加社團(tuán)活動(dòng) | 合計(jì) | |
學(xué)習(xí)積極性高 | 17 | 8 | 25 |
學(xué)習(xí)積極性一般 | 5 | 20 | 25 |
合計(jì) | 22 | 28 | 50 |
(1)如果隨機(jī)從該班抽查一名學(xué)生,抽到參加社團(tuán)活動(dòng)的學(xué)生的概率是多少?抽到不參加社團(tuán)活動(dòng)且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)運(yùn)用獨(dú)立檢驗(yàn)的思想方法分析:學(xué)生的學(xué)習(xí)積極性與參加社團(tuán)活動(dòng)情況是否有關(guān)系?并說(shuō)明理由.
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】編號(hào)為A,B,C,D,E的5個(gè)小球放在如圖所示的5個(gè)盒子里,要求每個(gè)盒子只能放1個(gè)小球,且A球不能放在1,2號(hào)盒子里,B球必須放在與A球相鄰的盒子中,求不同的放法有多少種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌汽車的店,對(duì)最近100份分期付款購(gòu)車情況進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)情況如下表所示.已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌汽車,若顧客分3期付款,其利潤(rùn)為1萬(wàn)元;分6期或9期付款,其利潤(rùn)為2萬(wàn)元;分12期付款,其利潤(rùn)為3萬(wàn)元.
付款方式 | 分3期 | 分6期 | 分9期 | 分12期 |
頻數(shù) | 20 | 20 |
(1)若以上表計(jì)算出的頻率近似替代概率,從該店采用分期付款購(gòu)車的顧客(數(shù)量較大)中隨機(jī)抽取3為顧客,求事件:“至多有1位采用分6期付款“的概率;
(2)按分層抽樣方式從這100為顧客中抽取5人,再?gòu)某槿〉?人中隨機(jī)抽取3人,記該店在這3人身上賺取的總利潤(rùn)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若,求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),函數(shù)的兩個(gè)極值點(diǎn)為, ,且.求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,我海監(jiān)船在島海域例行維權(quán)巡航,某時(shí)刻航行至處,此時(shí)測(cè)得其東北方向與它相距海里的處有一外國(guó)船只,且島位于海監(jiān)船正東海里處.
(1)求此時(shí)該外國(guó)船只與島的距離;
(2)觀測(cè)中發(fā)現(xiàn),此外國(guó)船只正以每小時(shí)海里的速度沿正南方向航行,為了將該船攔截在離島海里處,不讓其進(jìn)入島海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ()的離心率為,以橢圓的四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積為8.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,斜率為的直線與橢圓交于, 兩點(diǎn),點(diǎn)在直線的左上方.若,且直線, 分別與軸交于, 點(diǎn),求線段的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com