精英家教網 > 高中數學 > 題目詳情

【題目】設橢圓的右頂點為,上頂點為.已知橢圓的離心率為,.

)求橢圓的標準方程;

)設直線與橢圓交于兩點,且點在第二象限.延長線交于點,若的面積是面積的3倍,求的值.

【答案】(Ⅰ)

【解析】

(I)根據離心率和弦長列方程組,解方程組求得的值,進而求得橢圓方程.(II)設出兩點的坐標,利用的面積與面積的關系得到,利用向量結合平面向量共線的坐標運算,求得兩點橫坐標的關系.分別聯(lián)立直線的方程與直線、直線的方程與橢圓的方程,根據兩點橫坐標的關系列方程,解方程求得的值.

(Ⅰ)設橢圓的焦距為,由已知得,

所以,橢圓的方程為.

(Ⅱ)設點,,由題意,

的面積是面積的3倍,可得,所以

,從而,所以

,即.

易知直線的方程為,由消去,可得

由方程組消去,可得.

,可得,

整理得,解得,或.

時,,符合題意;

時,,不符合題意,舍去.

所以,的值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在四棱錐中,底面是邊長為的正方形,底面,四棱錐的體積的中點.

1)求異面直線所成角的大。

2)求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在五面體中,四邊形是正方形,,.

(1)求證:;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系,長度為2的線段EF的兩端點E、F分別在兩坐標軸上運動.

(1)求線段EF的中點G的軌跡C的方程;

(2)設軌跡C軸交于兩點,P是軌跡C上異于的任意一點,直線交直線M,直線交直線N,求證:MN為直徑的圓C總過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知分別是雙曲線E 的左、右焦點,P是雙曲線上一點, 到左頂點的距離等于它到漸近線距離的2倍,(1)求雙曲線的漸近線方程;(2)當時, 的面積為,求此雙曲線的方程。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點為別為F1、F2,且過點

1)求橢圓的標準方程;

2)如圖,點A為橢圓上一位于x軸上方的動點,AF2的延長線與橢圓交于點B,AO的延長線與橢圓交于點C,求ABC面積的最大值,并寫出取到最大值時直線BC的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】 已知函數.

(1)求函數在點處的切線方程;

(2)已知函數區(qū)間上的最小值為1,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知:曲線表示雙曲線;:曲線表示焦點在軸上的橢圓.

1)分別求出條件中的實數的取值范圍;

2)甲同學認為的充分條件,乙同學認為的必要條件,請判斷兩位同學的說法是否正確,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直三棱柱中,中點.

證明:平面;

線段上是否存在點,使三棱錐的體積為?若存在,確定點的位置;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案