【題目】已知橢圓C:.
(1)求橢圓C的離心率;
(2)設(shè)分別為橢圓C的左右頂點,點P在橢圓C上,直線AP,BP分別與直線相交于點M,N.當點P運動時,以M,N為直徑的圓是否經(jīng)過軸上的定點?試證明你的結(jié)論.
【答案】(1)(2)以為直徑的圓經(jīng)過軸上的定點和,證明見解析
【解析】
(1)先將轉(zhuǎn)化為,根據(jù)橢圓的性質(zhì)得到,即可求出離心率.
(2)根據(jù)橢圓方程求出,設(shè),則①,分別求出直線和的方程,再分別與相交于點 和,設(shè)以為直徑的圓經(jīng)過軸上的定點,則,即得②,將①代入②得
解得或,得出為直徑的圓是過定點和.
解:(1)由得,
那么
所以
解得,所以離心率
(2)由題可知,
設(shè),則①
直線的方程:
令,得,從而點坐標為
直線的方程:
令,得,從而點坐標為
設(shè)以為直徑的圓經(jīng)過軸上的定點,則
由得②
由①式得,代入②得
解得或
所以為直徑的圓經(jīng)過軸上的定點和.
科目:高中數(shù)學 來源: 題型:
【題目】某城市對一項惠民市政工程滿意程度(分值:分)進行網(wǎng)上調(diào)查,有2000位市民參加了投票,經(jīng)統(tǒng)計,得到如下頻率分布直方圖(部分圖):
現(xiàn)用分層抽樣的方法從所有參與網(wǎng)上投票的市民中隨機抽取位市民召開座談會,其中滿意程度在的有5人.
(1)求的值,并填寫下表(2000位參與投票分數(shù)和人數(shù)分布統(tǒng)計);
滿意程度(分數(shù)) | |||||
人數(shù) |
(2)求市民投票滿意程度的平均分(各分數(shù)段取中點值);
(3)若滿意程度在的5人中恰有2位為女性,座談會將從這5位市民中任選兩位發(fā)言,求男性甲或女性乙被選中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐中,四邊形為矩形,為等腰三角形,,平面平面,且,,,分別為,的中點.
(1)證明:平面;
(2)證明:平面平面;
(3)求四棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com