已知函數(shù)的圖象經(jīng)過(guò)點(diǎn)M(1,4),曲線在點(diǎn)M處的切線恰好與直線垂直。
(1)求實(shí)數(shù)的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍.
(1);(2)
解析試題分析:(1)
∵曲線在點(diǎn)M(1,4)出的切線恰好與直線垂直
∴ ①
又的圖像經(jīng)過(guò)M(1,4)
∴ ②
聯(lián)立①②解得
(2)由(1)得則
令 解得
∴在上為增函數(shù)
∴ 即
考點(diǎn):導(dǎo)數(shù)的幾何意義,直線方程,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性。
點(diǎn)評(píng):中檔題,在給定區(qū)間,導(dǎo)數(shù)非負(fù),函數(shù)為增函數(shù),導(dǎo)數(shù)非正,函數(shù)為減函數(shù)。涉及函數(shù)單調(diào)性及參數(shù)范圍的討論問(wèn)題,往往通過(guò)研究函數(shù)的單調(diào)性,最值等,得以解答。兩直線垂直,斜率乘積為-1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=-x3+x2-2x(a∈R).
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求實(shí)數(shù)a的取值范圍;
(3)若過(guò)點(diǎn)可作函數(shù)y=f(x)圖象的三條不同切線,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在與時(shí)都取得極值
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對(duì),不等式恒成立,求c的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,為的導(dǎo)函數(shù).
(Ⅰ)若,求的值;
(Ⅱ)若圖象與圖象關(guān)于直線對(duì)稱(chēng),△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊長(zhǎng)分別為,角A為的初相,,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),判斷和的大小,并說(shuō)明理由;
(3)求證:當(dāng)時(shí),關(guān)于的方程:在區(qū)間上總有兩個(gè)不同的解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)當(dāng)時(shí),求的極小值;
(2)若直線對(duì)任意的都不是曲線的切線,求的取值范圍;
(3)設(shè),求的最大值的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)(I)求函數(shù)圖象上的點(diǎn)處的切線方程;
(Ⅱ)已知函數(shù),其中是自然對(duì)數(shù)的底數(shù),
對(duì)于任意的,恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com