【題目】已知a≥3,函數(shù)F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范圍
(2)(1)求F(x)的最小值m(a)
(3)求F(x)在[0,6]上的最大值M(a)
【答案】
(1)
由a≥3,故x≤1時(shí),
x2﹣2ax+4a﹣2﹣2|x﹣1|=x2+2(a﹣1)(2﹣x)>0;
當(dāng)x>1時(shí),x2﹣2ax+4a﹣2﹣2|x﹣1|=x2﹣(2+2a)x+4a=(x﹣2)(x﹣2a),
則等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范圍是(2,2a)
(2)
(1)設(shè)f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,
則f(x)min=f(1)=0,g(x)min=g(a)=﹣a2+4a﹣2.
由﹣a2+4a﹣2=0,解得a=2+ (負(fù)的舍去),
由F(x)的定義可得m(a)=min{f(1),g(a)},
即m(a)=
(3)
當(dāng)0≤x≤2時(shí),F(xiàn)(x)≤f(x)≤max{f(0),f(2)}=2=F(2);
當(dāng)2<x≤6時(shí),F(xiàn)(x)≤g(x)≤max{g(2),g(6)}
=max{2,34﹣8a}=max{F(2),F(xiàn)(6)}.
則M(a)=
【解析】(1)由a≥3,討論x≤1時(shí),x>1,去掉絕對(duì)值,化簡(jiǎn)x2﹣2ax+4a﹣2﹣2|x﹣1|,判斷符號(hào),即可得到F(x)=x2﹣2ax+4a﹣2成立的x的取值范圍;(2)(1)設(shè)f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,求得f(x)和g(x)的最小值,再由新定義,可得F(x)的最小值;(2)分別對(duì)當(dāng)0≤x≤2時(shí),當(dāng)2<x≤6時(shí),討論F(x)的最大值,即可得到F(x)在[0,6]上的最大值M(a).本題考查新定義的理解和運(yùn)用,考查分類討論的思想方法,以及二次函數(shù)的最值的求法,不等式的性質(zhì),考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的最值及其幾何意義的相關(guān)知識(shí)可以得到問題的答案,需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲担
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,角α的頂點(diǎn)是原點(diǎn),始邊與x軸正半軸重合,終邊交單位圓于點(diǎn)A,且.將角α的終邊按逆時(shí)針方向旋轉(zhuǎn),交單位圓于點(diǎn)B.記A(x1,y1),B(x2,y2).
(Ⅰ)若,求x2;
(Ⅱ)分別過A,B作x軸的垂線,垂足依次為C,D.記△AOC的面積為S1,△BOD的面積為S2.若S1=2S2,求角α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的奇函數(shù).
(1)求的值;
(2)當(dāng),時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的點(diǎn)P和線段AC上的點(diǎn)D,滿足PD=DA,PB=BA,則四面體PBCD的體積的最大值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)f(x)=xa的圖象過點(diǎn)(2,4).
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)h(x)=4f(x)-kx-8在[5,8]上是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列滿足|an﹣ |≤1,n∈N* .
(1)求證:|an|≥2n﹣1(|a1|﹣2)(n∈N*)
(2)若|an|≤( )n , n∈N* , 證明:|an|≤2,n∈N* .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整;函數(shù)的解析式為 (直接寫出結(jié)果即可);
(2)根據(jù)表格中的數(shù)據(jù)作出一個(gè)周期的圖象;
(3)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)銳角三角形的內(nèi)角A,B,C的對(duì)邊分別為a、b、c,且sinA-cosC=cos(A-B).
(1)求B的大;
(2)求cosA+sinC的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ax2+bx+c(a≠0),滿足條件f(x+1)-f(x)=2x(x∈R),且f(0)=1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)當(dāng)x≥0時(shí),f(x)≥mx-3恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com