【題目】已知拋物線,過的直線與拋物線相交于兩點(diǎn).
(1)若點(diǎn)是點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對稱點(diǎn),求面積的最小值;
(2)是否存在垂直于軸的直線,使得被以為直徑的圓截得的弦長恒為定值?若存在,求出的方程和定值;若不存在,說明理由.
【答案】(1)(2)存在,直線的方程為;定值為
【解析】
(1)設(shè),,直線的方程為,聯(lián)立直線的方程與拋物線的方程消元,然后韋達(dá)定理可得,,然后,用將表示出來即可.
(2)假設(shè)滿足條件的直線存在,其方程為,則以為直徑的圓的方程為,將直線方程代入,得,然后將表示出來即可.
(1)依題意,點(diǎn)的坐標(biāo)為,可設(shè),,
直線的方程為,與聯(lián)立得.
由韋達(dá)定理得:,,
于是,
所以當(dāng)時(shí),面積最小值,最小值為.
(2)假設(shè)滿足條件的直線存在,其方程為,
則以為直徑的圓的方程為,
將直線方程代入,得,
則.
設(shè)直線與以為直徑的圓的交點(diǎn)為,,
則,,于是有
.
當(dāng),即時(shí),為定值.
故滿足條件的直線存在,其方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求在處的切線方程:
(2)已知實(shí)數(shù)時(shí),求證:函數(shù)的圖象與直線:有3個(gè)交點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,M,N,P分別是C1D1,BC,A1D1的中點(diǎn),有下列四個(gè)結(jié)論:
①AP與CM是異面直線;②AP,CM,DD1相交于一點(diǎn);③MN∥BD1;
④MN∥平面BB1D1D.
其中所有正確結(jié)論的編號(hào)是( 。
A.①④B.②④C.①④D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為平面上一點(diǎn),為直線:上任意一點(diǎn),過點(diǎn)作直線的垂線,設(shè)線段的中垂線與直線交于點(diǎn),記點(diǎn)的軌跡為.
(1)求軌跡的方程;
(2)過點(diǎn)作互相垂直的直線與,其中直線與軌跡交于點(diǎn)、,直線與軌跡交于點(diǎn)、,設(shè)點(diǎn),分別是和的中點(diǎn),求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD和矩形ACEF中,AB=,CE=1,CE⊥平面ABCD.
(1)求異面直線DF與BE所成角的余弦值;
(2)求二面角A-DF-B的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),,求整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“家校連心,立德樹人——重溫愛國故事,弘揚(yáng)愛國主義精神社會(huì)課堂”活動(dòng)中,王老師組建了一個(gè)微信群,群的成員由學(xué)生、家長、老師和講解員共同組成.已知該微信群中男學(xué)生人數(shù)多于女生人數(shù),女學(xué)生人數(shù)多于家長人數(shù),家長人數(shù)多于教師人數(shù),教師人數(shù)多于講解員人數(shù),講解員人數(shù)的兩倍多于男生人數(shù).若把這5類人群的人數(shù)作為一組數(shù)據(jù),當(dāng)該微信群總?cè)藬?shù)取最小值時(shí),這組數(shù)據(jù)的中位數(shù)是( )
A.5B.6C.7D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在圓上,過作軸的垂線,垂足為,點(diǎn)滿足.
(1)求點(diǎn)的軌跡的方程;
(2)直線上的點(diǎn)滿足.過點(diǎn)作直線垂直于線段交于點(diǎn).
(。┳C明:恒過定點(diǎn);
(ⅱ)設(shè)線段交于點(diǎn),求四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com