已知橢圓經(jīng)過(guò)點(diǎn)
,離心率為
,左右焦點(diǎn)分別為
.
(1)求橢圓的方程;
(2)若直線與橢圓交于
兩點(diǎn),與以
為直徑的圓交于
兩點(diǎn),且滿足
,求直線
的方程.
(1);(2)
或
.
解析試題分析:(1)由題意可得,解出
,
的值,即可求出橢圓的方程;
(2)由題意可得以為直徑的圓的方程為
,利用點(diǎn)到直線的距離公式得:圓心到直線
的距離
,可得
的取值范圍,利用弦長(zhǎng)公式可得
,設(shè)
,把直線
的方程與橢圓的方程聯(lián)立可得根與系數(shù)的關(guān)系,進(jìn)而得到弦長(zhǎng)
,由
,即可解得
的值.
試題解析:(1)由題意可得
解得橢圓的方程為
由題意可得以為直徑的圓的方程為
圓心到直線
的距離為
由,即
,可得
設(shè)
聯(lián)立
整理得
可得:,
解方程得,且滿足
直線
的方程為
或
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程;直線與圓錐曲線的綜合問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)A(-1,0),B(1,-1)和拋物線.,O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)A的動(dòng)直線l交拋物線C于M、P,直線MB交拋物線C于另一點(diǎn)Q,如圖.
(1)證明: 為定值;
(2)若△POM的面積為,求向量
與
的夾角;
(3)證明直線PQ恒過(guò)一個(gè)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知直線l與拋物線相切于點(diǎn)P(2,1),且與
軸交于點(diǎn)A,定點(diǎn)B的坐標(biāo)為(2,0) .
(1)若動(dòng)點(diǎn)M滿足,求點(diǎn)M的軌跡C;
(2)若過(guò)點(diǎn)B的直線l(斜率不等于零)與(I)中的軌跡C交于不同的兩點(diǎn)E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知過(guò)拋物線的焦點(diǎn)
的直線交拋物線于
,
兩點(diǎn).求證:
(1)為定值;
(2) 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線C:的焦點(diǎn)為F,直線y=4與y軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且
.
(1)求拋物線C的方程;
(2)過(guò)F的直線l與C相交于A,B兩點(diǎn),若AB的垂直平分線與C相交于M,N兩點(diǎn),且A,M,B,N四點(diǎn)在同一個(gè)圓上,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓的左、右焦點(diǎn)分別為
,,右頂點(diǎn)為A,上頂點(diǎn)為B.已知
=
.
(1)求橢圓的離心率;
(2)設(shè)P為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段PB為直徑的圓經(jīng)過(guò)點(diǎn),經(jīng)過(guò)點(diǎn)
的直線
與該圓相切與點(diǎn)M,
=
.求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,點(diǎn)
到點(diǎn)
的距離比它到
軸的距離多1,記點(diǎn)
的軌跡為
.
(1)求軌跡為的方程;
(2)設(shè)斜率為的直線
過(guò)定點(diǎn)
,求直線
與軌跡
恰好有一個(gè)公共點(diǎn),兩個(gè)公共點(diǎn),三個(gè)公共點(diǎn)時(shí)
的相應(yīng)取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知兩條拋物線和
,過(guò)原點(diǎn)
的兩條直線
和
,
與
分別交于
兩點(diǎn),
與
分別交于
兩點(diǎn).
(1)證明:
(2)過(guò)原點(diǎn)作直線
(異于
,
)與
分別交于
兩點(diǎn).記
與
的面積分別為
與
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓:
的左頂點(diǎn)為
,直線
交橢圓
于
兩點(diǎn)(
上
下),動(dòng)點(diǎn)
和定點(diǎn)
都在橢圓
上.
(1)求橢圓方程及四邊形的面積.
(2)若四邊形為梯形,求點(diǎn)
的坐標(biāo).
(3)若為實(shí)數(shù),
,求
的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com