(I)設(shè)是各項(xiàng)均不為零的等差數(shù)列,且公差,若將此數(shù)列刪去某一項(xiàng)得到的數(shù)列(按原來的順序)是等比數(shù)列:

①當(dāng)時(shí),求的數(shù)值;②求的所有可能值;

(II)求證:對(duì)于一個(gè)給定的正整數(shù),存在一個(gè)各項(xiàng)及公差都不為零的等差數(shù)列,其中任意三項(xiàng)(按原來的順序)都不能組成等比數(shù)列。

(I)①;②

(II)略


解析:

本小題考查等差數(shù)列與等比數(shù)列的綜合運(yùn)用。

(I)①當(dāng)時(shí), 中不可能刪去首項(xiàng)或末項(xiàng),否則等差數(shù)列中連續(xù)三項(xiàng)成等比數(shù)列,則。

若刪去,則有,即,化簡得

若刪去,則有,即,化簡得

綜上可知。

②當(dāng)時(shí), 中同樣不可能刪去首項(xiàng)或末項(xiàng)。

若刪去,則有,即,化簡得;

若刪去,則有,即,化簡得,舍去;

若刪去,則有,即,化簡得。

當(dāng)時(shí),不存在這樣的等差數(shù)列。事實(shí)上,在數(shù)列中,由于不能刪去首項(xiàng)和末項(xiàng),若刪去,則必有,這與矛盾;同樣若刪去,也有,這與矛盾;若刪去中的任意一個(gè),則必有,這與矛盾。綜上可知。

(II)略

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)a1,a2,…,an是各項(xiàng)均不為零的n(n≥4)項(xiàng)等差數(shù)列,且公差d≠0,若將此數(shù)列刪去某一項(xiàng)后得到的數(shù)列(按原來的順序)是等比數(shù)列.
(i)當(dāng)n=4時(shí),求
a1d
的數(shù)值;
(ii)求n的所有可能值.
(2)求證:對(duì)于給定的正整數(shù)n(n≥4),存在一個(gè)各項(xiàng)及公差均不為零的等差數(shù)列b1,b2,…,bn,其中任意三項(xiàng)(按原來的順序)都不能組成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)a1,a2,…,an是各項(xiàng)均不為零的n(n≥4)項(xiàng)等差數(shù)列,且公差d≠0,若將此數(shù)列刪去某一項(xiàng)后得到的數(shù)列(按原來的順序)是等比數(shù)列
(i)當(dāng)n=4時(shí),求
a1d
的數(shù)值;
(ii)求n的所有可能值.
(2)求證:存在一個(gè)各項(xiàng)及公差均不為零的n(n≥4)項(xiàng)等差數(shù)列,任意刪去其中的k項(xiàng)(1≤k≤n-3),都不能使剩下的項(xiàng)(按原來的順序)構(gòu)成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年江蘇卷)(I)設(shè)是各項(xiàng)均不為零的等差數(shù)列,且公差,若將此數(shù)列刪去某一項(xiàng)得到的數(shù)列(按原來的順序)是等比數(shù)列:

(1)①     當(dāng)時(shí),求的數(shù)值;②求的所有可能值;

(2)求證:對(duì)于一個(gè)給定的正整數(shù),存在一個(gè)各項(xiàng)及公差都不為零的等差數(shù)列,其中任意三項(xiàng)(按原來的順序)都不能組成等比數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)試題(江蘇卷) 題型:解答題

(I)設(shè)是各項(xiàng)均不為零的等差數(shù)列,且公差,若將此數(shù)列刪去某一項(xiàng)得到的數(shù)列(按原來的順序)是等比數(shù)列:

①當(dāng)時(shí),求的數(shù)值;②求的所有可能值;

(II)求證:對(duì)于一個(gè)給定的正整數(shù),存在一個(gè)各項(xiàng)及公差都不為零的等差數(shù)列,其中任意三項(xiàng)(按原來的順序)都不能組成等比數(shù)列。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案