【題目】萬(wàn)眾矚目的2018年俄羅斯世界杯決賽于北京時(shí)間201871523時(shí)在俄羅斯莫斯科的盧日尼基體育場(chǎng)進(jìn)行.為確?倹Q賽的順利進(jìn)行,組委會(huì)決定在比賽地點(diǎn)盧日尼基球場(chǎng)外臨時(shí)圍建一個(gè)矩形觀眾候場(chǎng)區(qū),總面積為(如圖所示).要求矩形場(chǎng)地的一面利用體育場(chǎng)的外墻,其余三面用鐵欄桿圍,并且要在體育館外墻對(duì)面留一個(gè)長(zhǎng)度為的入口.現(xiàn)已知鐵欄桿的租用費(fèi)用為100元/.設(shè)該矩形區(qū)域的長(zhǎng)為(單位:),租用鐵欄桿的總費(fèi)用為(單位:元).

1)將表示為的函數(shù);

2)試確定,使得租用此區(qū)域所用鐵欄桿所需費(fèi)用最小,并求出最小費(fèi)用.

【答案】1;(2)當(dāng)時(shí),租用此區(qū)域所用鐵欄桿所需費(fèi)用最小費(fèi)用為2200.

【解析】

1)利用已知條件,直接求解y表示為x的函數(shù),注明定義域;

2)利用基本不等式轉(zhuǎn)化求解最小值,即可確定x,使得租用此區(qū)域所用鐵欄桿所需費(fèi)用最小,求出最小費(fèi)用.

1)依題意有:,其中.

2)由均值不等式可得:

當(dāng)且僅當(dāng),即時(shí),取“”,

綜上:當(dāng)時(shí),租用此區(qū)域所用鐵欄桿所需費(fèi)用最小,最小費(fèi)用為2200

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用一個(gè)平行于圓錐底面的平面去截圓錐,截得圓臺(tái)的母線長(zhǎng)為,兩底面面積分別為.求:

1)圓臺(tái)的高;

2)圓臺(tái)的體積;

3)截得此圓臺(tái)的圓錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(I)若函數(shù)在區(qū)間上不是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;

(II)是否存在實(shí)數(shù),使得函數(shù)圖像與直線有兩個(gè)交點(diǎn)?若存在,求出所有的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某面包店隨機(jī)收集了面包種類(lèi)的有關(guān)數(shù)據(jù),經(jīng)分類(lèi)整理得到下表:

面包類(lèi)型

第一類(lèi)

第二類(lèi)

第三類(lèi)

第四類(lèi)

第五類(lèi)

第六類(lèi)

面包個(gè)數(shù)

90

60

30

80

100

40

好評(píng)率

0.6

0.45

0.7

0.35

0.6

0.5

好評(píng)率是指:一類(lèi)面包中獲得好評(píng)的個(gè)數(shù)與該類(lèi)面包的個(gè)數(shù)的比值.

1)從面包店收集的面包中隨機(jī)選取1個(gè),求這個(gè)面包是獲得好評(píng)的第五類(lèi)面包的概率;

2)從面包店收集的面包中隨機(jī)選取1個(gè),估計(jì)這個(gè)面包沒(méi)有獲得好評(píng)的概率;

3)面包店為增加利潤(rùn),擬改變生產(chǎn)策略,這將導(dǎo)致不同類(lèi)型面包的好評(píng)率發(fā)生變化.假設(shè)表格中只有兩類(lèi)面包的好評(píng)率數(shù)據(jù)發(fā)生變化,那么哪類(lèi)面包的好評(píng)率增加0.1,哪類(lèi)面包的好評(píng)率減少0.1,使得獲得好評(píng)的面包總數(shù)與樣本中的面包總數(shù)的比值達(dá)到最大?(只需寫(xiě)出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,四點(diǎn),,中恰有三點(diǎn)在橢圓上.

1)求橢圓的方程;

2)過(guò)點(diǎn)且斜率不為的直線交橢圓、兩點(diǎn),在軸上是否存在定點(diǎn),使得直線的斜率與直線的斜率之積為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的圖象與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),函數(shù)的圖象與x軸交于點(diǎn)C,D(點(diǎn)C在點(diǎn)D的左側(cè)),其中,.

(1)求證:函數(shù)的圖象交點(diǎn)落在一條定直線上;

(2),求a,bk應(yīng)滿(mǎn)足的關(guān)系式:

(3)是否存在函數(shù),使得B,C為線段AD的三等分點(diǎn)?若存在,求的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年7月24日,長(zhǎng)春長(zhǎng)生生物科技有限責(zé)任公司先被查出狂犬病疫苗生產(chǎn)記錄造假,后又被測(cè)出百白破疫苗“效價(jià)測(cè)定”項(xiàng)不符合規(guī)定, 由此引發(fā)的疫苗事件牽動(dòng)了無(wú)數(shù)中國(guó)人的心.疫苗直接用于健康人群,尤其是新生兒和青少年,與人民的健康聯(lián)系緊密.因此,疫苗在上市前必須經(jīng)過(guò)嚴(yán)格的檢測(cè),并通過(guò)臨床實(shí)驗(yàn)獲得相關(guān)數(shù)據(jù),以保證疫苗使用的安全和有效.某生物制品研究所將某一型號(hào)疫苗用在動(dòng)物小白鼠身上進(jìn)行科研和臨床實(shí)驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如下:

未感染病毒

感染病毒

總計(jì)

未注射疫苗

20

x

A

注射疫苗

30

y

B

總計(jì)

50

50

100

現(xiàn)從所有試驗(yàn)小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為

(1)求2×2列聯(lián)表中的數(shù)據(jù)的值;

(2)能否有99.9%把握認(rèn)為注射此種疫苗有效?

(3)現(xiàn)從感染病毒的小白鼠中任意抽取三只進(jìn)行病理分析,記已注射疫苗的小白鼠只數(shù)為,求的分布列和數(shù)學(xué)期望.

附:,n=a+b+c+d.

P(K2≥k0)

0.05

0.01

0.005

0.001

k0

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體中,點(diǎn)是四邊形的中心,關(guān)于直線,下列說(shuō)法正確的是( )

A. B.

C. 平面D. 平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(,,),在同一個(gè)周期內(nèi),當(dāng)時(shí),取得最大值,當(dāng)時(shí),取得最小值.

(1)求函數(shù)的解析式,并求[0,]上的單調(diào)遞增區(qū)間.

(2)將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,再向下平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,方程2個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案