【題目】在日常生活中,石子是我們經(jīng)常見到的材料,比如在各種建筑工地或者建材市場上常常能看到堆積如山的石子,它的主要成分是碳酸鈣.某雕刻師計劃在底面邊長為2m、高為4m的正四棱柱形的石料中,雕出一個四棱錐和球M的組合體,其中O為正四棱柱的中心,當(dāng)球的半徑r取最大值時,該雕刻師需去除的石料約重___________kg.(最后結(jié)果保留整數(shù),其中,石料的密度,質(zhì)量

【答案】

【解析】

求出正四棱柱的體積,和正四棱錐、球的體積,從而得出需去除的石料的體積,再由公式計算出質(zhì)量.

依題意知,正四棱柱的體積.四棱錐的底面為正方形,高,所以其體積.M的半徑r最大為1,此時其體積.故該雕刻師需去除的石料的體積.,所以該雕刻師需去除的石料的質(zhì)量為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,.

1)若恒成立.的最大值

2)若,。1)中的,當(dāng)時,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為等差數(shù)列,各項為正的等比數(shù)列的前項和為,,__________.在①;②;③這三個條件中任選其中一個,補充在橫線上,并完成下面問題的解答(如果選擇多個條件解答,則以選擇第一個解答記分).

1)求數(shù)列的通項公式;

2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

1)當(dāng)時,求函數(shù)上的最小值;

2)若函數(shù)上存在零點,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓錐PO中,AB是圓O的直徑,且AB4,C是底面圓O上一點,且AC2,點D為半徑OB的中點,連接PD.

1)求證:PC在平面APB內(nèi)的射影是PD;

2)若PA4,求底面圓心O到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點為拋物線的焦點,點在拋物線上,過點的直線交拋物線兩點,線段的中點為,且滿足

1)若直線的斜率為1,求點的坐標(biāo);

2)若,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記數(shù)列的前n項和為,已知,.

1)求數(shù)列的通項公式;

2)設(shè),記數(shù)列的前n項和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知等邊的邊長為3,點,分別是邊,上的點,且.如圖2,將沿折起到的位置.

1)求證:平面平面

2)給出三個條件:①;②二面角大小為;③.在這三個條件中任選一個,補充在下面問題的條件中,并作答:在線段上是否存在一點,使直線與平面所成角的正弦值為,若存在,求出的長;若不存在,請說明理由.注:如果多個條件分別解答,按第一個解答給分

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱柱,底面為等腰梯形,;,側(cè)面底面.

1)在側(cè)面中能否作一條直線使其與平行?如果能,請寫出作圖過程并給出證明;如果不能,請說明理由;

2)求四面體的體積.

查看答案和解析>>

同步練習(xí)冊答案