已知等差數(shù)列的前n項(xiàng)和為,且,.
(1)求數(shù)列的通項(xiàng);(2)設(shè),求數(shù)列的前n項(xiàng)和.
(Ⅰ);(Ⅱ).

試題分析:(Ⅰ)由等差數(shù)列的通項(xiàng)公式和等差數(shù)列的前項(xiàng)和公式可求首項(xiàng)和公差,從而求等差數(shù)列的通項(xiàng).
(Ⅱ)利用數(shù)列分組求和的方法,分別求等比數(shù)列和等差數(shù)列的和,即可得數(shù)列的前n項(xiàng)和.
試題解析:(Ⅰ)設(shè)等差數(shù)列的首項(xiàng)為,公差為.因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025915808436.png" style="vertical-align:middle;" />,,
所以有,故.
(Ⅱ)由(Ⅰ)有,所以.
考點(diǎn):;2、等差數(shù)列的前項(xiàng)和公式;3、等比數(shù)列的前項(xiàng)和為;4、數(shù)列分組求和.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列中,.
(I)求數(shù)列的通項(xiàng)公式;
(II)若數(shù)列的前項(xiàng)和,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}滿足:a1=20,a2=7,an+2﹣an=﹣2(n∈N*).
(Ⅰ)求a3,a4,并求數(shù)列{an}通項(xiàng)公式;
(Ⅱ)記數(shù)列{an}前2n項(xiàng)和為S2n,當(dāng)S2n取最大值時(shí),求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)不等式組所表示的平面區(qū)域?yàn)镈n,記Dn內(nèi) 的整點(diǎn)個(gè)數(shù)為an(n∈N*)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn)).
(1) 求證:數(shù)列{an}的通項(xiàng)公式是an=3n(n∈N*).
(2) 記數(shù)列{an}的前n項(xiàng)和為Sn,且Tn.若對(duì)于一切的正整數(shù)n,總有Tn≤m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列滿足:數(shù)列滿足。
(1)若是等差數(shù)列,且的值及的通項(xiàng)公式;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列,,若以為系數(shù)的二次方程:都有根滿足.
(1)求證:為等比數(shù)列
(2)求.
(3)求的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等比數(shù)列的首項(xiàng),公比,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列的前項(xiàng)和為(  ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列的公差不為零,首項(xiàng)的等比中項(xiàng),則數(shù)列的前項(xiàng)之和是 (  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案