已知數(shù)列
是等差數(shù)列,且
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)令
求數(shù)列
前n項(xiàng)和的公式.
(1)
(2)當(dāng)
時(shí),
;當(dāng)
時(shí),
試題分析:(Ⅰ)解:設(shè)數(shù)列
公差為
,則
又
所以
(Ⅱ)解:令
則由
得
①
②
當(dāng)
時(shí),①式減去②式,得
所以
當(dāng)
時(shí),
綜上可得當(dāng)
時(shí),
;當(dāng)
時(shí),
點(diǎn)評(píng):主要是考查了數(shù)列的求和的運(yùn)用,以及等差數(shù)列的通項(xiàng)公式的運(yùn)用,屬于中檔題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
等差數(shù)列
的公差為
,且
成等比數(shù)列.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)設(shè)
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知數(shù)列{
}的前n項(xiàng)和
,數(shù)列{
}滿足
=
.
(I)求證:數(shù)列{
}是等差數(shù)列,并求數(shù)列{
}的通項(xiàng)公式;
(Ⅱ)設(shè)
,數(shù)列
的前
項(xiàng)和為
,求滿足
的
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
在數(shù)列
中,對(duì)于任意
,等式:
恒成立,其中常數(shù)
.
(1)求
的值;
(2)求證:數(shù)列
為等比數(shù)列;
(3)如果關(guān)于
的不等式
的解集為
,試求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知命題:“在等差數(shù)列
中,若
,則
”為真命題,由于印刷問(wèn)題,括號(hào)處的數(shù)模糊不清,可算得括號(hào)內(nèi)的數(shù)為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
設(shè)等差數(shù)列
滿足
,則m的值為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知等差數(shù)列
的前13項(xiàng)和
,則
=( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知數(shù)列
為正常數(shù),且
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)
(3)是否存在正整數(shù)M,使得
恒成立?若存在,求出相應(yīng)的M的最小值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>