在數(shù)列中,對于任意,等式:恒成立,其中常數(shù)
(1)求的值;
(2)求證:數(shù)列為等比數(shù)列;
(3)如果關(guān)于的不等式的解集為,試求實數(shù)的取值范圍.
(1);(2)只需求出即可;(3)。

試題分析:(Ⅰ) 因為,
所以,,
解得 .                3分
(Ⅱ)當時,由,   ①
,           ②
將①,②兩式相減,得,
化簡,得,其中.         5分
因為,
所以,其中.           6分
因為 為常數(shù),
所以數(shù)列為等比數(shù)列.            8分
(Ⅲ)  由(Ⅱ)得,                 9分
所以
,
又因為,所以不等式
可化簡為,
,∴原不等式               11分
由題意知,不等式的解集為,
因為函數(shù)上單調(diào)遞增,
所以只要求 即可,
解得.                 14分
點評:(1)解此題的關(guān)鍵是通過證明數(shù)列是等比數(shù)列,從而求出數(shù)列的通項公式。(2)解決恒成立問題常用的方法是分離參數(shù)法。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)為等差數(shù)列的前項和,,則=(  )
A.B.
C.D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若數(shù)列的通項為,則其前項和為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知等差數(shù)列中,,前9項和( )
A.108B.72C.36D.18

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在等差數(shù)列中,已知,則為  ( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知等差數(shù)列的首項,公差,且第2項、第5項、第14項分別是等比數(shù)列的第2項、第3項、第4項.
(1)求數(shù)列、的通項公式;
(2)設(shè)數(shù)列對任意的,均有成立,求

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列是等差數(shù)列,且
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)令求數(shù)列前n項和的公式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)等差數(shù)列的前n項和為,若,,則當取最小值時,=(      )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)等差數(shù)列{}的前項和為,已知,
(Ⅰ) 求數(shù)列{}的通項公式;
(Ⅱ)求數(shù)列{}的前n項和;
(Ⅲ)當n為何值時,最大,并求的最大值.

查看答案和解析>>

同步練習冊答案