定義域?yàn)镈的函數(shù)f(x)同時(shí)滿(mǎn)足條件①常數(shù)a,b滿(mǎn)足a<b,區(qū)間[a,b]D,②使f(x)在[a,b]上的值域?yàn)閇ka,kb](k∈N+),那么我們把f(x)叫做[a,b]上的“k級(jí)矩陣”函數(shù),函數(shù)f(x)=x3是[a,b]上的“1級(jí)矩陣”函數(shù),則滿(mǎn)足條件的常數(shù)對(duì)(a,b)共有 
[     ]
A.1對(duì)
B.2對(duì)
C.3對(duì)
D.4對(duì)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镈的函數(shù)f(x),對(duì)任意x∈D,存在正數(shù)K,都有|f(x)|≤K成立,則稱(chēng)函數(shù)f(x)是D上的“有界函數(shù)”.已知下列函數(shù):①f(x)=2sin x;②f(x)=
1-x2
;③f(x)=1-2x;④f(x)=
x
x2+1
,其中是“有界函數(shù)”的是
 
.(寫(xiě)出所有滿(mǎn)足要求的函數(shù)的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镈的函數(shù)f(x),如果對(duì)任意x∈D,存在正數(shù)K,都有|f(x)|≤K|x|成立,那么稱(chēng)函數(shù)f(x)是D上的“倍約束函數(shù)”,已知下列函數(shù):①f(x)=2x;②f(x)=2sin(x+
π
4
)
;③f(x)=
x-1
;④f(x)=
x
x2-x+1
,其中是“倍約束函數(shù)的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泉州模擬)定義域?yàn)镈的函數(shù)f(x),其導(dǎo)函數(shù)為f′(x).若對(duì)?x∈D,均有f(x)<f′(x),則稱(chēng)函數(shù)f(x)為D上的夢(mèng)想函數(shù).
(Ⅰ)已知函數(shù)f(x)=sinx,試判斷f(x)是否為其定義域上的夢(mèng)想函數(shù),并說(shuō)明理由;
(Ⅱ)已知函數(shù)g(x)=ax+a-1(a∈R,x∈(0,π))為其定義域上的夢(mèng)想函數(shù),求a的取值范圍;
(Ⅲ)已知函數(shù)h(x)=sinx+ax+a-1(a∈R,x∈[0,π])為其定義域上的夢(mèng)想函數(shù),求a的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•虹口區(qū)二模)定義域?yàn)镈的函數(shù)f(x),如果對(duì)于區(qū)間I內(nèi)(I⊆D)的任意兩個(gè)數(shù)x1、x2都有f(
x1+x2
2
)≥
1
2
[f(x1)+f(x2)]
成立,則稱(chēng)此函數(shù)在區(qū)間I上是“凸函數(shù)”.
(1)判斷函數(shù)f(x)=lgx在R+上是否是“凸函數(shù)”,并證明你的結(jié)論;
(2)如果函數(shù)f(x)=x2+
a
x
1,2
上是“凸函數(shù)”,求實(shí)數(shù)a的取值范圍;
(3)對(duì)于區(qū)間
c,d
上的“凸函數(shù)”f(x),在
c,d
上任取x1,x2,x3,…,xn
①證明:當(dāng)n=2k(k∈N*)時(shí),f(
x1+x2+…+xn
n
)≥
1
n
[f(x1)+f(x2)+…+f(xn)]
成立;
②請(qǐng)?jiān)龠x一個(gè)與①不同的且大于1的整數(shù)n,
證明:f(
x1+x2+…+xn
n
)≥
1
n
[f(x1)+f(x2)+…+f(xn)]
也成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•虹口區(qū)二模)定義域?yàn)镈的函數(shù)f(x),如果對(duì)于區(qū)間I內(nèi)(I⊆D)的任意兩個(gè)數(shù)x1、x2都有f(
x1+x2
2
)≥
1
2
[f(x1)+f(x2)]
成立,則稱(chēng)此函數(shù)在區(qū)間I上是“凸函數(shù)”.
(1)判斷函數(shù)f(x)=-x2在R上是否是“凸函數(shù)”,并證明你的結(jié)論;
(2)如果函數(shù)f(x)=x2+
a
x
在區(qū)間[1,2]上是“凸函數(shù)”,求實(shí)數(shù)a的取值范圍;
(3)對(duì)于區(qū)間[c,d]上的“凸函數(shù)”f(x),在[c,d]上的任取x1,x2,x3,…,x2n,證明:f(
x1+x2+…+x2n
2n
)≥
1
2n
[f(x1)+f(x2)+…+f(x2n)]

查看答案和解析>>

同步練習(xí)冊(cè)答案