(本小題滿分16分)
橢圓:的左、右頂點(diǎn)分別,橢圓過點(diǎn)且離心率.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓上異于、兩點(diǎn)的任意一點(diǎn)軸,為垂足,延長到點(diǎn),且,過點(diǎn)作直線軸,連結(jié)并延長交直線于點(diǎn),線段的中點(diǎn)記為點(diǎn).
①求點(diǎn)所在曲線的方程;
②試判斷直線與以為直徑的圓的位置關(guān)系, 并證明.
(1)(2)①②直線與圓相切,證明:AQ的方程為 , ,,,
,,∴直線QN與圓O相切

試題分析:(1)因?yàn)闄E圓經(jīng)過點(diǎn)(0,1),所以,又橢圓的離心率,
,由,所以
故所求橢圓方程為。
(2)①設(shè),則,設(shè),∵HP=PQ,∴ 即,將代入
所以Q點(diǎn)在以O(shè)為圓心,2為半徑的圓上,即Q點(diǎn)在以AB為直徑的圓O上。
②又A(-2,0),直線AQ的方程為,令,則,
又B(2,0),N為MB的中點(diǎn),∴,,

,∴,∴直線QN與圓O相切。
點(diǎn)評:最后一問判斷直線與圓的位置關(guān)系轉(zhuǎn)化為向量簡化了解題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓具有 (   )
A.相同的長軸長B.相同的焦點(diǎn)
C.相同的離心率D.相同的頂點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對于方程)的曲線C,下列說法錯誤的是
A.時,曲線C是焦點(diǎn)在y軸上的橢圓 B.時,曲線C是圓
C.時,曲線C是雙曲線D.時,曲線C是橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點(diǎn),且離心率e=.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點(diǎn)、,且線段的垂直平分線過定點(diǎn),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1、F2是橢圓+=1的兩焦點(diǎn),經(jīng)點(diǎn)F2的直線交橢圓于點(diǎn)A、B,若|AB|=5,則|AF1|+|BF1|等于(  )
A.11           B.10           C.9        D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果方程表示焦點(diǎn)在軸上的橢圓,則的取值范圍是  ( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)在平面直角坐標(biāo)系中,已知橢圓)的左焦點(diǎn)為,且點(diǎn)上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線的斜率為2且經(jīng)過橢圓的左焦點(diǎn).求直線與該橢圓相交的弦長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

焦距為,離心率,焦點(diǎn)在軸上的橢圓標(biāo)準(zhǔn)方程是       (   )
               
            

查看答案和解析>>

同步練習(xí)冊答案