如圖,在直三棱柱中,,,是的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值.
(Ⅰ)詳見解析;(Ⅱ)
解析試題分析:(Ⅰ)證明線面平行常用以下兩種方法:一是用線面平行的判定定理,二是用面面平行的性質(zhì).本題用這兩種方法都行;
(Ⅱ)首先應(yīng)考慮作出平面截三棱柱所得的截面.作出該截面便很容易得到二面角的平面角即為.
本題也可用向量解決.
試題解析:(Ⅰ)法一:連結(jié),交于,連結(jié),則,從而平面.
法二:取的中點(diǎn),連結(jié),易得平面,從而平面.
(Ⅱ)的中點(diǎn),連結(jié)、,易得平面就是平面,
又平面,所以,所以就是該二面角的平面角.
.
考點(diǎn):立體幾何中線面平行的證明及二面角的計(jì)算.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=,O為AB的中點(diǎn).
(Ⅰ)求證:EO⊥平面ABCD;
(Ⅱ)求點(diǎn)D到平面AEC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在圓錐PO中, PO=,?O的直徑AB=2, C為弧AB的中點(diǎn),D為AC的中點(diǎn).
(1)求證:平面POD^平面PAC;
(2)求二面角B—PA—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱錐P ABC中,已知PA⊥平面ABC,△ABC是邊長為2的正三角形,D,E分別為PB,PC中點(diǎn)
(1)若PA=2,求直線AE與PB所成角的余弦值;
(2)若PA,求證:平面ADE⊥平面PBC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在三棱拄中,側(cè)面,已知,,.
(Ⅰ)求證:平面;
(Ⅱ)試在棱(不包含端點(diǎn))上確定一點(diǎn)的位置,使得;
(Ⅲ)在(Ⅱ)的條件下,求和平面所成角正弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱柱的底面是平行四邊形,且,,,為的中點(diǎn),平面.
(Ⅰ)證明:平面平面;
(Ⅱ)若,試求異面直線與所成角的余弦值;
(Ⅲ)在(Ⅱ)的條件下,試求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面為菱形,其中,,為的中點(diǎn).
(1) 求證:;
(2) 若平面平面,且為的中點(diǎn),求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱中,側(cè)棱底面,,,,.
(1)證明:平面;
(2)若是棱的中點(diǎn),在棱上是否存在一點(diǎn),使平面?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,六棱錐的底面是邊長為1的正六邊形,底面。
(Ⅰ)求證:平面平面;
(Ⅱ)若直線PC與平面PDE所成角的正弦值為,求六棱錐高的大小。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com