一橢圓其中心在原點(diǎn),焦點(diǎn)在同一坐標(biāo)軸上,焦距為,一雙曲線和這橢圓有公共焦點(diǎn),且雙曲線的半實(shí)軸比橢圓的長半軸長小4,且雙曲線的離心率與橢圓的離心率之比為7:3,求橢圓和雙曲線的方程.
【答案】分析:首先根據(jù)焦點(diǎn)分別在x軸、y軸上進(jìn)行分類,不妨先設(shè)焦點(diǎn)在x軸上的橢圓、雙曲線的標(biāo)準(zhǔn)方程,然后根據(jù)題意與橢圓、雙曲線的性質(zhì)列方程組,再解方程組求得焦點(diǎn)在x軸上的橢圓、雙曲線的標(biāo)準(zhǔn)方程,最后把焦點(diǎn)在y軸上的橢圓、雙曲線的標(biāo)準(zhǔn)方程補(bǔ)充上即可.
解答:解:若橢圓、雙曲線的焦點(diǎn)在x軸上,則設(shè)橢圓、雙曲線的標(biāo)準(zhǔn)方程分別為、
由題意得
解得a1=7,a2=3,b1=6,b2=2,
所以焦點(diǎn)在x軸上的橢圓、雙曲線的標(biāo)準(zhǔn)方程分別為;
同理焦點(diǎn)在y軸上的橢圓、雙曲線的標(biāo)準(zhǔn)方程分別為
點(diǎn)評(píng):本題主要考查橢圓、雙曲線的標(biāo)準(zhǔn)方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一橢圓其中心在原點(diǎn),焦點(diǎn)在同一坐標(biāo)軸上,焦距為2
13
,一雙曲線和這橢圓有公共焦點(diǎn),且雙曲線的半實(shí)軸比橢圓的長半軸長小4,且雙曲線的離心率與橢圓的離心率之比為7:3,求橢圓和雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•通州區(qū)一模)已知橢圓的中心在原點(diǎn)O,短半軸的端點(diǎn)到其右焦點(diǎn)F(2,0)的距離為
10
,過焦點(diǎn)F作直線l,交橢圓于A,B兩點(diǎn).
(Ⅰ)求這個(gè)橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若橢圓上有一點(diǎn)C,使四邊形AOBC恰好為平行四邊形,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一橢圓其中心在原點(diǎn),焦點(diǎn)在同一坐標(biāo)軸上,焦距為2
13
,一雙曲線和這橢圓有公共焦點(diǎn),且雙曲線的半實(shí)軸比橢圓的長半軸長小4,且雙曲線的離心率與橢圓的離心率之比為7:3,求橢圓和雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考數(shù)學(xué)一輪復(fù)習(xí)必備(第62課時(shí)):第八章 圓錐曲線方程-雙曲線(解析版) 題型:解答題

一橢圓其中心在原點(diǎn),焦點(diǎn)在同一坐標(biāo)軸上,焦距為,一雙曲線和這橢圓有公共焦點(diǎn),且雙曲線的半實(shí)軸比橢圓的長半軸長小4,且雙曲線的離心率與橢圓的離心率之比為7:3,求橢圓和雙曲線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案