【題目】設(shè),對(duì)于,有.
(1)證明:
(2)令,
證明 :(I)當(dāng)時(shí),
(II)當(dāng)時(shí),
【答案】(1)見(jiàn)解析;(2)(I)見(jiàn)解析;(II)見(jiàn)解析.
【解析】
(1)由分析法可證明,找到成立的充分性。(2)(I)當(dāng)時(shí),當(dāng)時(shí),有;再由分析法證明。(II)當(dāng)時(shí),當(dāng)時(shí),有 ,再由分析法結(jié)合數(shù)學(xué)歸納法證明。
(1)若,則只需證
只需證成立
只需要證成立,而該不等式在時(shí)恒成立…
故只需要驗(yàn)證時(shí)成立即可,
而當(dāng)時(shí),均滿足該不等式。
綜上所得不等式成立。
(2)、(I)當(dāng)時(shí),
用數(shù)學(xué)歸納法很明顯可證當(dāng)時(shí),有;
下證:,
只需要證,
只需證
只需證,
只需證,
只需證.
由(1)可知,我們只需要證,
只需證,只需證.
當(dāng)時(shí)該不等式恒成立
當(dāng)時(shí),
,故該不等式恒成立
綜上所得,上述不等式成立
(II)、當(dāng)時(shí),用數(shù)學(xué)歸納法很明顯可證當(dāng)時(shí),有
下證:
只需證: ,
只需證:
只需證:,
只需證:
只需證:,……
同理由(2)及數(shù)學(xué)歸納法,可得該不等式成立。
綜上所述,不等式成立
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),若函數(shù)恰有兩個(gè)不同的零點(diǎn),求的值;
(3)當(dāng)時(shí),若的解集為 ,且 中有且僅有一個(gè)整數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,四邊形是邊長(zhǎng)為2的正方形,,為的中點(diǎn),點(diǎn)在上,平面,在的延長(zhǎng)線上,且.
(1)證明:平面.
(2)過(guò)點(diǎn)作的平行線,與直線相交于點(diǎn),點(diǎn)為的中點(diǎn),求到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的各項(xiàng)為正數(shù),且,數(shù)列滿足:對(duì)任意恒成立,且常數(shù).
(1)若為等差數(shù)列,求證:也為等差數(shù)列;
(2)若,為等比數(shù)列,求的值(用c表示);
(3)若且,令,求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,圓的方程為.
(1)寫出直線的普通方程和圓的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與圓相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直棱柱ABC-中,D,E分別是AB,BB1的中點(diǎn),=AC=CB=AB.
(Ⅰ)證明://平面;
(Ⅱ)求二面角D--E的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在班級(jí)活動(dòng)中,4名男生和3名女生站成一排表演節(jié)目:(寫出必要的數(shù)學(xué)式,結(jié)果用數(shù)字作答)
(1)三名女生不能相鄰,有多少種不同的站法?
(2)四名男生相鄰有多少種不同的排法?
(3)女生甲不能站在左端,女生乙不能站在右端,有多少種不同的排法?
(4)甲乙丙三人按高低從左到右有多少種不同的排法?(甲乙丙三位同學(xué)身高互不相等)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列四個(gè)命題
①“若,則互為相反數(shù)”的逆命題;
②“全等三角形的面積相等”的否命題;
③“若,則有實(shí)根”的逆否命題;
④“不等邊三角形的三個(gè)內(nèi)角相等”的逆命題.
其中真命題為_______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn) ,兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)焦點(diǎn)作 軸的垂線交橢圓上半部分于點(diǎn),過(guò)點(diǎn)作橢圓的弦,設(shè)弦 所在的直線分別交軸于、兩點(diǎn),若為等腰三角形時(shí),問(wèn)直線的斜率是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com