【題目】已知函數(shù),其中常數(shù).

(1)若上單調(diào)遞增,求的取值范圍;

(2)令,將函數(shù)的圖象向左平移個單位,再向上平移1個單位,得到函數(shù)的圖象.區(qū)間滿足:上至少含有30個零點.在所有滿足上述條件的中,求的最小值.

【答案】(1);(2).

【解析】(1)因為函數(shù)y=f(x)在上單調(diào)遞增,且

所以,且

所以.即的取值范圍是.

(2),

的圖象向左平移個單位,再向上平移1個單位后得到的圖象,所以.

,得

所以兩個相鄰零點之間的距離為.

若b-a最小,則a和b都是零點,

此時在區(qū)間[a,π+a],[a,2π+a],…,[a,mπ+a](mN*)上分別恰有3,5,…,2m+1個零點,所以在區(qū)間[a,14π+a]上恰有29個零點,

從而在區(qū)間(14π+a,b]上至少有一個零點,

所以.

另一方面,在區(qū)間上恰有30個零點,

因此,b-a的最小值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),令h(x)=f(x)g(x),且對任意x1 , x2∈(0,+∞),都有 <0,g(1)=0,則不等式xh(x)<0的解集為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面內(nèi), ,| |=| |=2, = + ,若| |<1,則| |的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某租賃公司擁有汽車100輛.當每輛車的月租金為3000元時,可全部租出.當每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.
(Ⅰ)當每輛車的月租金定為3600元時,能租出多少輛車?
(Ⅱ)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省數(shù)學學業(yè)水平考試成績分為A、B、C、D四個等級,在學業(yè)水平成績公布后,從該省某地區(qū)考生中隨機抽取60名考生,統(tǒng)計他們的數(shù)學成績,部分數(shù)據(jù)如下:

等級

A

B

C

D

頻數(shù)

24

12

頻率

0.1


(1)補充完成上述表格中的數(shù)據(jù);
(2)現(xiàn)按上述四個等級,用分層抽樣的方法從這60名考生中抽取10名,在這10名考生中,從成績A等和B等的所有考生中隨機抽取2名,求至少有一名成績?yōu)锳等的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=log2x,x∈(4,8),則函數(shù)y=f(x2)+ 的值域為( )
A.[8,10)
B.( ,10)
C.(8,
D.( ,10)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)在其定義域內(nèi)是單調(diào)函數(shù),求實數(shù)的取值范圍;

(2)若,令為自然對數(shù)的底數(shù)),求證:存在,使

請考生在第22、23兩題中任選一題作答.注意:只能做所選定的題目.如果多做,則按所做的第一個題目計分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)y=ax(a>0且a≠1)在[1,2]上的最大值是M,最小值是m,且M=2m,則實數(shù)a=( )
A.
B.2
C.
且2
D.
或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2),若對于任意x∈R,都有f(x﹣2)≤f(x),則實數(shù)a的取值范圍是(
A.[﹣ , ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣ , ]

查看答案和解析>>

同步練習冊答案