【題目】已知橢圓的左、右焦點分別為,,直線與橢圓在第一象限內的交點是,且軸,.
(1)求橢圓的方程;
(2)是否存在斜率為的直線與以線段為直徑的圓相交于,兩點,與橢圓相交于,兩點,且?若存在,求出直線的方程;若不存在,說明理由.
【答案】(1);(2)存在, 或
【解析】
(1)由題意,先設,,得到,根據(jù),求出,,再由點在橢圓上,得到,求解,即可得出結果;
(2)先假設存在斜率為的直線,設為,由(1)得到以線段為直徑的圓為,根據(jù)點到直線距離公式,以及圓的弦長公式得到,聯(lián)立直線與橢圓方程,根據(jù)韋達定理與弦長公式,得到,再由求出,即可得出結果.
(1)設,,
由題意,得
因為
解得,則,
又點在橢圓上,所以,解得.
所以橢圓E的方程為;
(2)假設存在斜率為的直線,設為,
由(1)知,,
所以以線段為直徑的圓為.
由題意,圓心到直線的距離,得.
,
由消去y,
整理得.
由題意,,
解得,又,所以.
設,
則
,
若,
則
整理得,
解得,或.
又,所以,即.
故存在符合條件的直線,其方程為,或.
科目:高中數(shù)學 來源: 題型:
【題目】
在平面直角坐標系中,以坐標原點O為極點,x軸正半軸為極軸,建立極坐標系,已知曲線C的極坐標方程為:,經(jīng)過點,傾斜角為的直線l與曲線C交于A,B兩點
(I)求曲線C的直角坐標方程和直線l的參數(shù)方程;
(Ⅱ)求的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線為公海與領海的分界線,一艘巡邏艇在原點處發(fā)現(xiàn)了北偏東 海面上處有一艘走私船,走私船正向停泊在公海上接應的走私海輪航行,以便上海輪后逃竄.已知巡邏艇的航速是走私船航速的2倍,且兩者都是沿直線航行,但走私船可能向任一方向逃竄.
(1)如果走私船和巡邏船相距6海里,求走私船能被截獲的點的軌跡;
(2)若與公海的最近距離20海里,要保證在領海內捕獲走私船,則,之間的最遠距離是多少海里?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知菱形中,,與相交于點,將沿折起,使頂點至點,在折起的過程中,下列結論正確的是( )
A.B.存在一個位置,使為等邊三角形
C.與不可能垂直D.直線與平面所成的角的最大值為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x),g(x)滿足關系g(x)=f(x)f(x+α),其中α是常數(shù).
(1)設f(x)=cosx+sinx,,求g(x)的解析式;
(2)設計一個函數(shù)f(x)及一個α的值,使得;
(3)當f(x)=|sinx|+cosx,時,存在x1,x2∈R,對任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,求|x1-x2|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在上的奇函數(shù),當時,,當時,,若直線與函數(shù)的圖象恰有7個不同的公共點,則實數(shù)的取值范圍為_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出定理:在圓錐曲線中,是拋物線的一條弦,是的中點,過點且平行于軸的直線與拋物線的交點為.若兩點縱坐標之差的絕對值,則的面積,試運用上述定理求解以下各題:
(1)若,所在直線的方程為,是的中點,過且平行于軸的直線與拋物線的交點為,求;
(2)已知是拋物線的一條弦,是的中點,過點且平行于軸的直線與拋物線的交點為,分別為和的中點,過且平行于軸的直線與拋物線分別交于點,若兩點縱坐標之差的絕對值,求和;
(3)請你在上述問題的啟發(fā)下,設計一種方法求拋物線:與弦圍成成的“弓形”的面積,并求出相應面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com