【題目】已知數(shù)列的前項(xiàng)和為,滿足,,數(shù)列滿足,,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項(xiàng)公式;
(3)若,數(shù)列的前項(xiàng)和為,對(duì)任意的,都有,求實(shí)數(shù)的取值范圍.
【答案】(1);(2)證明見(jiàn)解析,;(3)或.
【解析】
(1)運(yùn)用數(shù)列的遞推式以及數(shù)列的和與通項(xiàng)的關(guān)系可得,再由等比數(shù)列的定義、通項(xiàng)公式可得結(jié)果;(2)對(duì)等式兩邊除以,結(jié)合等差數(shù)列的定義和通項(xiàng)公式,可得所求;(3)求得,由數(shù)列的錯(cuò)位相減法求和,可得,化簡(jiǎn),即,對(duì)任意的成立,運(yùn)用數(shù)列的單調(diào)性可得最大值,解不等式可得所求范圍.
(1),可得,即;
時(shí),,又,
相減可得,即,
則;
(2)證明:,
可得,
可得是首項(xiàng)和公差均為1的等差數(shù)列,
可得,即;
(3) ,
前n項(xiàng)和為,
,
相減可得
,
可得,
,即為,
即,對(duì)任意的成立,
由,
可得為遞減數(shù)列,即n=1時(shí)取得最大值12=1,
可得,即或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓經(jīng)過(guò)兩點(diǎn),且圓心在直線上.
(1)求圓的方程;
(2)已知過(guò)點(diǎn)的直線與圓相交截得的弦長(zhǎng)為,求直線的方程;
(3)已知點(diǎn),在平面內(nèi)是否存在異于點(diǎn)的定點(diǎn),對(duì)于圓上的任意動(dòng)點(diǎn),都有為定值?若存在求出定點(diǎn)的坐標(biāo),若不存在說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) .若g(x)存在2個(gè)零點(diǎn),則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:y2=2x的焦點(diǎn)為F,平行于x軸的兩條直線l1,l2分別交C于A,B兩點(diǎn),交C的準(zhǔn)線于P,Q兩點(diǎn).
(1)若F在線段AB上,R是PQ的中點(diǎn),證明:AR∥FQ;
(2)若△PQF的面積是△ABF的面積的兩倍,求AB中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種汽車(chē),購(gòu)車(chē)費(fèi)用是10萬(wàn)元,第一年維修費(fèi)用是0.2萬(wàn)元,以后逐年遞增0.2萬(wàn)元,且每年的保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)等約為0.9萬(wàn)元.
(1)設(shè)這種汽車(chē)使用年()的維修費(fèi)用的和為萬(wàn)元,求的表達(dá)式;
(2)這種汽車(chē)使用多少年時(shí),它的年平均費(fèi)用最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, 平面, , , , , , .
(I)求異面直線與所成角的余弦值;
(II)求證: 平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓O:與直線相切.
(1)求圓O的方程;
(2)若過(guò)點(diǎn)的直線l被圓O所截得的弦長(zhǎng)為4,求直線l的方程;
(3)若過(guò)點(diǎn)作兩條斜率分別為,的直線交圓O于B、C兩點(diǎn),且,求證:直線BC恒過(guò)定點(diǎn).并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱臺(tái)的底面是正三角形,平面平面,,.
(Ⅰ)求證:;
(Ⅱ)若和梯形的面積都等于,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)正項(xiàng)等差數(shù)列的前n項(xiàng)和為,已知且成等比數(shù)列
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前n項(xiàng)和;
(3)設(shè)數(shù)列滿足求證:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com