某市第一中學(xué)要用鮮花布置花圃中五個不同區(qū)域,要求同一區(qū)域上用同一種顏色的鮮花,相鄰區(qū)域使用不同顏色的鮮花.現(xiàn)有紅、黃、藍、白、紫五種不同顏色的鮮花可供任意選擇.
(1)當(dāng)區(qū)域同時用紅色鮮花時,求布置花圃的不同方法的種數(shù);
(2)求恰有兩個區(qū)域用紅色鮮花的概率;
(3)記為花圃中用紅色鮮花布置的區(qū)域的個數(shù),求隨機變量的分布列及其數(shù)學(xué)期望.
(1)36   (2)6/35   (3)1
(I)顏色相同的區(qū)域只可能是區(qū)域A、D和區(qū)域B、E,求出基本事件的總數(shù)和恰有兩個區(qū)域用紅色鮮花所包含的基本事件的個數(shù)即可求得.
(II)花圃中紅色鮮花區(qū)域的塊數(shù)可能為0,1,2.求出相應(yīng)的概率即可求得分布列及期望.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
一個口袋內(nèi)有()個大小相同的球,其中有3個紅球和個白球.已知從口袋中隨機取出一個球是紅球的概率是
(1)當(dāng)時,不放回地從口袋中隨機取出3個球,求取到白球的個數(shù)的期望
(2)若,有放回地從口袋中連續(xù)地取四次球(每次只取一個球),在四次摸球中恰好取到兩次紅球的概率大于,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某籃球隊甲、乙兩名隊員在本賽季已結(jié)束的8場比賽中得分統(tǒng)計的莖葉圖如下:

(1)比較這兩名隊員在比賽中得分的均值和方差的大;(4分)
(2)以上述數(shù)據(jù)統(tǒng)計甲、乙兩名隊員得分超過15分的頻率作為概率,假設(shè)甲、乙兩名隊員在同一場比賽中得分多少互不影響,預(yù)測在本賽季剩余的2場比賽中甲、乙兩名隊員得分均超過15分的次數(shù)的分布列和均值.(8分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

12分)
要從兩名同學(xué)中挑出一名,代表班級參加射擊比賽,根據(jù)以往的成績記錄同學(xué)甲擊中目標的環(huán)數(shù)為X1的分布列為
X1
5
6
7
8
9
10
P
0.03
0.09
0.20
0.31
0.27
0.10
同學(xué)乙擊目標的環(huán)數(shù)X2的分布列為
X2
5
6
7
8
9
P
0.01
0.05
0.20
0.41
0.33
 (1)請你評價兩位同學(xué)的射擊水平(用數(shù)據(jù)作依據(jù));
(2)如果其它班參加選手成績都在9環(huán)左右,本班應(yīng)派哪一位選手參賽,如果其它班參賽選手的成績都在7環(huán)左右呢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

先在甲、乙兩個靶.某射手向甲靶射擊一次,命中的概率為,命中得分,沒有命中得分;向乙靶射擊兩次,每次命中的概率為,每命中一次得分,沒有命中得分.該射手每次射擊的結(jié)果相互獨立.假設(shè)該射手完成以上三次射擊.
(Ⅰ)求該射手恰好命中一次的概率;
(Ⅱ)求該射手的總得分的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某產(chǎn)品按行業(yè)生產(chǎn)標準分成個等級,等級系數(shù)依次為,其中為標準,為標準,產(chǎn)品的等級系數(shù)越大表明產(chǎn)品的質(zhì)量越好. 已知某廠執(zhí)行標準生產(chǎn)該產(chǎn)品,且該廠的產(chǎn)品都符合相應(yīng)的執(zhí)行標準.從該廠生產(chǎn)的產(chǎn)品中隨機抽取件,相應(yīng)的等級系數(shù)組成一個樣本,數(shù)據(jù)如下:
3   5   3   3   8   5   5   6   3   4
6   3   4   7   5   3   4   8   5   3
8   3   4   3   4   4   7   5   6   7
該行業(yè)規(guī)定產(chǎn)品的等級系數(shù)的為一等品,等級系數(shù)的為二等品,等級系數(shù)的為三等品.
(1)試分別估計該廠生產(chǎn)的產(chǎn)品的一等品率、二等品率和三等品率;
(2)從樣本的一等品中隨機抽取2件,求所抽得2件產(chǎn)品等級系數(shù)都是8的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

假設(shè)某次數(shù)學(xué)測試共有20道選擇題,每個選擇題都給了4個選項(其中有且僅有一個是正確的)。評分標準規(guī)定:每題只選1項,答對得5分,否則得0分。某考生每道題都給出了答案,并且會做其中的12道題,其他試題隨機答題,則他的得分X的方差DX=       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

車站每天8∶00~9∶00,9∶00~10∶00都恰有一輛客車到站,8∶00~9∶00到站的客車A可能在8∶10,8∶30,8∶50到站,其概率依次為;9∶00~10∶00到站的客車B可能在9∶10,9∶30,9∶50到站,其概率依次為.
(1)旅客甲8∶00到站,設(shè)他的候車時間為,求的分布列和;
(2)旅客乙8∶20到站,設(shè)他的候車時間為,求的分布列和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某廠家擬資助三位大學(xué)生自主創(chuàng)業(yè),現(xiàn)聘請兩位專家,獨立地對每位大學(xué)生的創(chuàng)業(yè)方案進行評審.假設(shè)評審結(jié)果為“支持”或“不支持”的概率都是.若某人獲得兩個“支持”,則給予10萬元的創(chuàng)業(yè)資助;若只獲得一個“支持”,則給予5萬元的資助;若未獲得“支持”,則不予資助,令表示該公司的資助總額.
(Ⅰ)寫出的分布列;
(Ⅱ)求數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊答案