橢圓的離心率為(  )
A.B.C.D.
D
由橢圓方程知:;所以離心率為故選D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中有一直角梯形,的中點為,,,,,以為焦點的橢圓經(jīng)過點.
(1)求橢圓的標準方程;
(2)若點,問是否存在直線與橢圓交于兩點且,若存在,求出直線的斜率的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的焦點坐標為【   】
A.(-3,0)B.,
C.,D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓及以下3個函數(shù):①;②;
,其中函數(shù)圖像能等分該橢圓面積的函數(shù)個數(shù)有……………(     ).
A.0個B.1個 C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本題滿分16分)
點A、B分別是橢圓長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,
(1)求點P的坐標;
(2)設M是橢圓長軸AB上的一點,M到直線AP的距離等于,求點M的坐標;
(3)在(2)的條件下,求橢圓上的點到點M的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本小題滿分12分)
設橢圓)經(jīng)過點,其離心率與雙曲線的離心率互為倒數(shù).
(Ⅰ)求橢圓的方程;(注意橢圓的焦點在軸上哦!)
(Ⅱ) 動直線交橢圓兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)已知橢圓的焦點坐標為,長軸等于焦距的2倍.
(1)求橢圓的方程;
(2)矩形的邊軸上,點、落在橢圓上,求矩形繞軸旋轉(zhuǎn)一周后所得圓柱體側(cè)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題10分)已知橢圓的中心在原點,焦點在軸上,離心率為,且經(jīng)過點,直線交橢圓于不同的兩點A,B.
(1)求橢圓的方程;
(2)求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓中心為坐標原點,焦點位于x軸上,分別為右頂點和上頂點,是左焦點;當時,此類橢圓稱為“黃金橢圓”,其離心率為.類比“黃金橢圓”可推算出“黃金雙曲線”的離心率為              .

查看答案和解析>>

同步練習冊答案