精英家教網 > 高中數學 > 題目詳情

已知a∈R,函數f(x)=+ln x-1.
(1)當a=1時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)求f(x)在區(qū)間(0,e]上的最小值.

(1) x-4y+4ln 2-4=0   (2) 當a≤0時,函數f(x)在區(qū)間(0,e]上無最小值;
當0<a<e時,函數f(x)在區(qū)間(0,e]上的最小值為ln a;
當a≥e時,函數f(x)在區(qū)間(0,e]上的最小值為.

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

一矩形鐵皮的長為8 cm,寬為5 cm,在四個角上截去四個相同的小正方形,制成一個無蓋的小盒子,問小正方形的邊長為多少時,盒子容積最大?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)當時,求曲線在點處的切線方程;
(2)若在區(qū)間上是減函數,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數時都取得極值.
(1)求的值及的極大值與極小值;
(2)若方程有三個互異的實根,求的取值范圍;
(3)若對,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x-aln x(a∈R).
(1)當a=2時,求曲線y=f(x)在點A(1,f(1))處的切線方程;
(2)求函數f(x)的極值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)若存在單調遞減區(qū)間,求實數的取值范圍;
(2)若,求證:當時,恒成立;
(3)利用(2)的結論證明:若,則.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義在R上的函數同時滿足以下條件:
在(0,1)上是減函數,在(1,+∞)上是增函數;
是偶函數;
在x=0處的切線與直線y=x+2垂直.
(1)求函數的解析式;
(2)設g(x)=,若存在實數x∈[1,e],使g(x)<,求實數m的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數, 
(1)若,求曲線處的切線方程;
(2)若對任意的,都有恒成立,求的最小值;
(3)設,,若,為曲線的兩個不同點,滿足,且,使得曲線處的切線與直線AB平行,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知f(x)=xln x,g(x)=x3ax2x+2.
(1)求函數f(x)的單調區(qū)間;
(2)求f(x)在區(qū)間[t,t+2](t>0)上的最小值;
(3)對一切的x∈(0,+∞),2f(x)<g′(x)+2恒成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案