【題目】某校進行理科、文科數(shù)學(xué)成績對比,某次考試后,各隨機抽取100名同學(xué)的數(shù)學(xué)考試成績進行統(tǒng)計,其頻率分布表如下.
分組 | 頻數(shù) | 頻率 | 分組 | 頻數(shù) | 頻率 | |
[135,150] | 8 | 0.08 | [135,150] | 4 | 0.04 | |
[120,135) | 17 | 0.17 | [120,135) | 18 | 0.18 | |
[105,120) | 40 | 0.4 | [105,120) | 37 | 0.37 | |
[90,105) | 21 | 0.21 | [90,105) | 31 | 0.31 | |
[75,90) | 12 | 0. 12 | [75,90) | 7 | 0.07 | |
[60,75) | 2 | 0.02 | [60,75) | 3 | 0.03 | |
總計 | 100 | 1 | 總計 | 100 | 1 |
理科 文科
(Ⅰ)根據(jù)數(shù)學(xué)成績的頻率分布表,求文科數(shù)學(xué)成績的中位數(shù)的估計值;(精確到0.01)
(Ⅱ)請?zhí)顚懴旅娴牧新?lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認為數(shù)學(xué)成績與文理科有關(guān):
數(shù)學(xué)成績120分 | 數(shù)學(xué)成績<120分 | 合計 | |
理科 | |||
文科 | |||
合計 | 200 |
參考公式與臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | ||
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】(Ⅰ)108.65分(Ⅱ)沒有90%的把握認為數(shù)學(xué)成績與文理科有關(guān)
【解析】分析:(Ⅰ)由圖表求出理科數(shù)學(xué)成績的頻率分布表中成績小于105分的頻率和成績大于120分的頻率,由得答案;
(Ⅱ)根據(jù)題目所給的數(shù)據(jù)填寫2×2列聯(lián)表即可,計算K的觀測值K2,對照題目中的表格,得出統(tǒng)計結(jié)論.
詳解:(Ⅰ)文科數(shù)學(xué)成績的頻率分布表中,成績小于105分的頻率為0.41<0.5,
成績小于120分的頻率為0.78>0.5,
故文科數(shù)學(xué)成績的中位數(shù)的估計值為分.
(Ⅱ)根據(jù)數(shù)學(xué)成績的頻率分布表得如下列聯(lián)表:
數(shù)學(xué)成績分 | 數(shù)學(xué)成績分 | 合計 | |
理科 | 25 | 75 | 100 |
文科 | 22 | 78 | 100 |
合計 | 47 | 153 | 200 |
,故沒有90%的把握認為數(shù)學(xué)成績與文理科有關(guān).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn為數(shù)列{an}的前n項和,已知,對任意n∈N*,都有2Sn=(n+1)an.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列的前項和為Tn,求Tn的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三點,,,曲線上任意一點滿足.
求的方程;
已知點,動點 在曲線C上,曲線C在Q處的切線與直線PA,PB都相交,交點分別為D,E,求與的面積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象與函數(shù)的圖象有三個不同的交點、、,其中.給出下列四個結(jié)論: ①;②;③;④.其中,正確結(jié)論的個數(shù)有( )個
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中, , ,若將其沿AC折成直二面角D﹣AC﹣B,則三棱錐D﹣ACB的外接球的表面積為( )
A.16π
B.8π
C.4π
D.2π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司在新年晚會上舉行抽獎活動,有甲,乙兩個抽獎方案供員工選擇. 方案甲:員工最多有兩次抽獎機會,每次抽獎的中獎率均為 ,第一次抽獎,若未中獎,則抽獎結(jié)束,若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進行第二次抽獎;若正面朝上,員工則須進行第二次抽獎,且在第二次抽獎中,若中獎,則獲得1000元;若未中獎,則不能獲得獎金.
方案乙:員工連續(xù)三次抽獎,每次中獎率均為 ,每次中獎均可獲得獎金400元.
(Ⅰ)求某員工選擇方案甲進行抽獎所獲獎金X(元)的分布列;
(Ⅱ)試比較某員工選擇方案乙與選擇方案甲進行抽獎,哪個方案更劃算?
(Ⅲ)已知公司共有100人在活動中選擇了方案甲,試估計這些員工活動結(jié)束后沒有獲獎的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過A作AE⊥CD,垂足為E,現(xiàn)將△ADE沿AE折疊,使得DE⊥EC.
(1)求證:BC⊥面CDE;
(2)在線段AE上是否存在一點R,使得面BDR⊥面DCB,若存在,求出點R的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某學(xué)校的800名男生中隨機抽取50名測量其身高,被測學(xué)生身高全部介于和之間,將測量結(jié)果按如下方式分組:第一組,第二組,…,第八組,如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為4.
(1)請補全頻率分布直方圖并求第七組的頻率;
(2)估計該校的800名男生的身高的中位數(shù)以及身高在以上(含)的人數(shù);
(3)若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為,,事件,事件,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)對任意的x∈R,都有f(﹣x)+f(x)=﹣6,且當(dāng)x≥0時,f(x)=2x﹣4,定義在R上的函數(shù)g(x)=a(x﹣a)(x+a+1),兩函數(shù)同時滿足:x∈R,都有f(x)<0或g(x)<0;x∈(﹣∞,﹣1),f(x)g(x)<0,則實數(shù)a的取值范圍為( )
A.(﹣3,0)
B.
C.(﹣3,﹣1)
D.(﹣3,﹣1]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com