如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=6,BD=8,E是PB上任意一點(diǎn),△AEC面積的最小值是3.

(1)求證:AC⊥DE;
(2)求四棱錐P-ABCD的體積.
(1)詳見解析,(2).

試題分析:(1)證明線線垂直,一般利用線面垂直性質(zhì)與判定定理進(jìn)行轉(zhuǎn)化. 因?yàn)樗倪呅蜛BCD是菱形,所以AC⊥BD.又因?yàn)镻D⊥平面ABCD,所以PD⊥AC.因而AC⊥平面PDB,從而AC⊥DE.(2)設(shè)AC與BD相交于點(diǎn)F.連EF.由(1),知AC⊥平面PDB,所以AC⊥EF.所以S△ACE=AC·EF,因此△ACE面積最小時(shí),EF最小,則EF⊥PB.由△PDB∽△FEB,解得PD=,因?yàn)镻D⊥平面ABCD,所以VP—ABCD=S□ABCD·PD=×24×
(1)證明:連接BD,設(shè)AC與BD相交于點(diǎn)F.
因?yàn)樗倪呅蜛BCD是菱形,所以AC⊥BD.
又因?yàn)镻D⊥平面ABCD,AC平面ABCD,所以PD⊥AC.
而AC∩BD=F,所以AC⊥平面PDB.
E為PB上任意一點(diǎn),DE平面PBD,所以AC⊥DE.
(2)連EF.由(1),知AC⊥平面PDB,EF平面PBD,所以AC⊥EF. S△ACE=AC·EF,在△ACE面積最小時(shí),EF最小,則EF⊥PB.
S△ACE=3,×6×EF=3,解得EF=1. 
由△PDB∽△FEB,得.由于EF=1,F(xiàn)B=4,
所以PB=4PD,即.解得PD=
VP—ABCD=S□ABCD·PD=×24×
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖2,四邊形為矩形,平面,,,作如圖3折疊,折痕.其中點(diǎn)、分別在線段、上,沿折疊后點(diǎn)在線段上的點(diǎn)記為,并且.

(1)證明:平面;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2014·貴陽(yáng)模擬)一個(gè)幾何體是由圓柱ADD1A1和三棱錐E-ABC組合而成,點(diǎn)A,B,C在圓O的圓周上,其正(主)視圖,側(cè)(左)視圖的面積分別為10和12,如圖所示,其中EA⊥平面ABC,AB⊥AC,AB=AC.AE=2.

(1)求證:AC⊥BD.
(2)求三棱錐E-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱錐中,底面,且
點(diǎn)的中點(diǎn),且交于點(diǎn).
(1)求證:平面
(2)當(dāng)時(shí),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:已知長(zhǎng)方體的底面是邊長(zhǎng)為的正方形,高,的中點(diǎn),交于點(diǎn).
(1)求證:平面;
(2)求證:∥平面
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

菱形的邊長(zhǎng)為3,交于,且.將菱形沿對(duì)角線折起得到三棱錐(如圖),點(diǎn)是棱的中點(diǎn),

(1)求證:平面平面;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知正方體外接球的體積是,那么正方體的棱長(zhǎng)等于(  )
A.     B.      C.     D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一個(gè)正方體的體積是8,則這個(gè)正方體的內(nèi)切球的表面積是(   )
A.8π
B.6π
C.4π
D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

圓錐的表面積是底面積的倍,那么該圓錐的側(cè)面展開圖扇形的圓心角為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案