【題目】如圖是一建筑物的三視圖(單位: ),現(xiàn)需將其外壁用油漆粉刷一遍,已知每平方米用漆,問需要油漆多少千克?(無需求近似值)

【答案】

【解析】試題分析:由三視圖可知該建筑是一個正四棱柱+圓錐形成的組合體,根據(jù)三視圖得圓錐的底面半徑及母線長,正四棱柱的高及底面正方形的邊長,再根據(jù)面積公式算出圓錐的表面積及四棱柱的底面積與側(cè)面積,然后根據(jù)每平方米用漆即可算出所需油漆的質(zhì)量.

試題解析:由三視圖知建筑物為一組合體,自上而下分別是圓錐和正四棱柱,并且圓錐的底面半徑為3 m,母線長為5 m,正四棱柱的高為4 m,底面是邊長為3 m的正方形,圓錐的表面積為πr2πrl15π24π (m2);四棱柱的一個底面積為9 m2,正四棱柱的側(cè)面積為4×4×348 (m2),所以外壁面積為24π948(24π39) (m2)

所以需要油漆(24π39)×0.2(4.8π7.8) (kg)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的程序框圖,當輸入的x的值為04,輸出的值相等根據(jù)該圖和下列各小題的條件解答下面的幾個問題.

(1)該程序框圖解決的是一個什么問題?

(2)當輸入的x的值為3,求輸出的f(x)的值;

(3)要想使輸出的值最大,求輸入的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學擬在高一下學期開設(shè)游泳選修課,為了了解高一學生喜歡游泳是否與性別有關(guān),現(xiàn)從高一學生中抽取100人做調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計

男生

10

女生

20

合計

已知在這100人中隨機抽取一人抽到喜歡游泳的學生的概率為

(Ⅰ)請將上述列聯(lián)表補充完整,并判斷是否有的把握認為喜歡游泳與性別有關(guān)?并說明你的理由;

(Ⅱ)針對問卷調(diào)查的100名學生,學校決定從喜歡游泳的人中按分層抽樣的方法隨機抽取6人成立游泳科普知識宣傳組,并在這6人中任選兩人作為宣傳組的組長,求這兩人中至少有一名女生的概率.

參考公式:,其中

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一段演繹推理:直線平行于平面,則這條直線平行于平面內(nèi)所有直線;已知直線平面,直線平面,直線平面,則直線直線的結(jié)論是錯誤的,這是因為 ( )

A. 大前提錯誤 B. 小前提錯誤 C. 推理形式錯誤 D. 非以上錯誤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=exe-x(xR,e為自然對數(shù)的底數(shù)).

(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性.

(2)是否存在實數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對一切x都成立?若存在,求出t;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分14)

如圖的幾何體中, 平面, 平面為等邊三角形, 的中點.

1)求證: 平面

2)求證:平面平面。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為招聘新員工設(shè)計了一個面試方案:應(yīng)聘者從6道備選題中一次性隨機抽取3道題,按題目要求獨立完成.規(guī)定:至少正確完成其中2道題的便可通過.已知6道備選題中應(yīng)聘者甲有4道題能正確完成,2道題不能完成;應(yīng)聘者乙每題正確完成的概率都是,且每題正確完成與否互不影響.

(1)分別求甲、乙兩人正確完成面試題數(shù)的分布列及數(shù)學期望;

(2)請分析比較甲、乙兩人誰面試通過的可能性大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的半徑為,圓心在直線y=2x,圓被直線x-y=0截得的弦長為4,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著機構(gòu)改革工作的深入進行,各單位要減員增效,有一家公司現(xiàn)有職員2a人(140<2a<420,且a為偶數(shù)),每人每年可創(chuàng)利b萬元.據(jù)評估,在經(jīng)營條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.01b萬元,但公司需付下崗職員每人每年0.4b萬元的生活費,并且該公司正常運轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的,為獲得最大的經(jīng)濟效益,該公司應(yīng)裁員多少人?

查看答案和解析>>

同步練習冊答案