【題目】已知函數(shù)f(x)=ex-e-x(x∈R,且e為自然對數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性.
(2)是否存在實數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對一切x都成立?若存在,求出t;若不存在,請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校學(xué)生研究性學(xué)習(xí)小組發(fā)現(xiàn),學(xué)生上課的注意力指標(biāo)隨著聽課時間的變化而變化,老師講課開始時,學(xué)生的興趣激增;接下來學(xué)生的興趣將保持較理想的狀態(tài)一段時間,隨后學(xué)生的注意力開始分散.設(shè) 表示學(xué)生注意力指標(biāo),該小組發(fā)現(xiàn) 隨時間 (分鐘)的變化規(guī)律( 越大,表明學(xué)生的注意力越集中)如下: (,且 )
若上課后第 分鐘時的注意力指標(biāo)為 ,回答下列問題:
(1)求 的值;
(2)上課后第 分鐘時和下課前 分鐘時比較,哪個時間注意力更集中?并請說明理由.
(3)在一節(jié)課中,學(xué)生的注意力指標(biāo)至少達(dá)到 的時間能保持多長?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2-6x+8<0}, .
(1)若x∈A是x∈B的充分條件,求a的取值范圍.
(2)若A∩B=,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)在區(qū)間上的最大值與最小值;
(2)若在上存在,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),點在軸上,點在軸上,且,.
(1)當(dāng)點在軸上運(yùn)動時,求點的軌跡的方程;
(2)設(shè)點是軌跡上的動點,點在軸上,圓內(nèi)切于,求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一建筑物的三視圖(單位: ),現(xiàn)需將其外壁用油漆粉刷一遍,已知每平方米用漆,問需要油漆多少千克?(無需求近似值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究家用轎車在高速公路上的車速情況,交通部門對100名家用轎車駕駛員進(jìn)行調(diào)查,得到其在高速公路上行駛時的平均車速情況為:在55名男性駕駛員中,平均車速超過100km/h的有40人,不超過100km/h的有15人.在45名女性駕駛員中,平均車速超過100km/h的有20人,不超過100km/h的有25人.
(1)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為平均車速超過100km/h的人與性別有關(guān).
平均車速超過 100km/h人數(shù) | 平均車速不超過 100km/h人數(shù) | 合計 | |
男性駕駛員人數(shù) | |||
女性駕駛員人數(shù) | |||
合計 |
(2)以上述數(shù)據(jù)樣本來估計總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨機(jī)抽取3輛,記這3輛車中駕駛員為男性且車速超過100km/h的車輛數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列和數(shù)學(xué)期望.
參考公式與數(shù)據(jù): ,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).它與曲線交于兩點.
(1)求的長;
(2)在以為極點, 軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點的極坐標(biāo)為,求點到線段中點的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷并證明函數(shù)的奇偶性;
(2)判斷當(dāng)時函數(shù)的單調(diào)性,并用定義證明;
(3)若定義域為,解不等式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com