△ABC的三個內(nèi)角A,B,C的對邊分別a,b,c,且acos C,bcos B,ccos A成等差數(shù)列,則角B等于( )
A.30° B.60° C.90° D.120°
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題六練習(xí)卷(解析版) 題型:解答題
已知圓C1:x2+y2-2y=0,圓C2:x2+(y+1)2=4的圓心分別為C1,C2,P為一個動點,且直線PC1,PC2的斜率之積為-.
(1)求動點P的軌跡M的方程;
(2)是否存在過點A(2,0)的直線l與軌跡M交于不同的兩點C,D,使得|C1C|=|C1D|?若存在,求直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題五練習(xí)卷(解析版) 題型:選擇題
網(wǎng)格紙中的小正方形邊長為1,一個正三棱錐的側(cè)視圖如圖所示,則這個正三棱錐的體積為( )
A. B.3 C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題三練習(xí)卷(解析版) 題型:解答題
函數(shù)f(x)=sin(ωx+φ)ω>0,|φ|<的部分圖像如圖Z3-4所示,將y=f(x)的圖像向右平移個單位長度后得到函數(shù)y=g(x)的圖像.
(1)求函數(shù)y=g(x)的解析式;
(2)在△ABC中,它的三個內(nèi)角滿足2sin2=gC++1,且其外接圓半徑R=2,求△ABC的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題三練習(xí)卷(解析版) 題型:選擇題
已知=k,0<θ<,則sinθ-的值( )
A.隨著k的增大而增大
B.有時隨著k的增大而增大,有時隨著k的增大而減小
C.隨著k的增大而減小
D.是一個與k無關(guān)的常數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題七練習(xí)卷(解析版) 題型:解答題
某種報紙,進(jìn)貨商當(dāng)天以每份1元從報社購進(jìn),以每份2元售出.若當(dāng)天賣不完,剩余報紙報社以每份0.5元的價格回收.根據(jù)市場統(tǒng)計,得到這個季節(jié)的日銷售量X(單位:份)的頻率分布直方圖(如圖所示),將頻率視為概率.
(1)求頻率分布直方圖中a的值;
(2)若進(jìn)貨量為n(單位:份),當(dāng)n≥X時,求利潤Y的表達(dá)式;
(3)若當(dāng)天進(jìn)貨量n=400,求利潤Y的分布列和數(shù)學(xué)期望E(Y)(統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題七練習(xí)卷(解析版) 題型:選擇題
已知某隨機變量X的概率密度函數(shù)為P(x)=則隨機變量X落在區(qū)間(1,2)內(nèi)的概率為( )
A.e2+e B. C.e2-e D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)理復(fù)習(xí)方案二輪作業(yè)手冊新課標(biāo)·通用版專題一練習(xí)卷(解析版) 題型:選擇題
某程序框圖如圖所示,該程序運行后,輸出x的值為31,則a等于( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文復(fù)習(xí)二輪作業(yè)手冊新課標(biāo)·通用版限時集7講練習(xí)卷(解析版) 題型:填空題
如圖所示的是函數(shù)f(x)=2sin(ωx+φ)(ω>0,0≤φ≤)的部分圖像,其中A,B兩點之間的距離為5,那么f(-1)=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com