【題目】如圖,菱形OBCD的頂點O與坐標原點重合,一邊在x軸的正半軸上,已知∠BOD=60°,求菱形各邊和兩條對角線所在直線的傾斜角及斜率.

【答案】見解析

【解析】試題分析:利用菱形的基本性質,即對邊平行且相等,對角線平分每一組內對角,兩條對角線互相垂直,先求傾斜角,再求斜率。

試題解析:

因為OD∥BC∠BOD=60°,

所以直線OD,BC的傾斜角都是60°,斜率都是tan60°=;

又因為DC∥OB,

所以直線DC,OB的傾斜角都是0°,斜率也都為0;

由菱形的性質可得∠COB=30°,∠OBD=60°,

所以直線OC的傾斜角為30°,斜率kOC=tan30°=,

直線BD的傾斜角為∠DBx=180°-60°=120°,斜率。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】ABC的三個頂點分別為A(0,4)、B(-2,6)、C(-8,0).

(1)分別求邊ACAB所在直線的方程;

(2)求AC邊上的中線BD所在直線的方程;

(3)求AC邊的中垂線所在直線的方程;

(4)求AC邊上的高所在直線的方程;

(5)求經過兩邊ABAC的中點的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓E的左右頂點分別為A、B,左右焦點分別為F1、F2 , |AB|=4,|F1F2|=2 ,直線y=kx+m(k>0)交橢圓于C、D兩點,與線段F1F2及橢圓短軸分別交于M、N兩點(M、N不重合),且|CM|=|DN|.
(Ⅰ)求橢圓E的離心率;
(Ⅱ)若m>0,設直線AD、BC的斜率分別為k1、k2 , 求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD∠ABC=60°,PA=AB=BC,

EPC的中點.求證:

CD⊥AE;

PD⊥平面ABE

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 為參數(shù)),A,B是C上的動點,且滿足OA⊥OB(O為坐標原點),以原點O為極點,x軸的正半軸為極軸建立坐標系,點D的極坐標為
(1)求線段AD的中點M的軌跡E的普通方程;
(2)利用橢圓C的極坐標方程證明 為定值,并求△AOB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐PABCD中,PA⊥底面ABCDADBC,ABADAC=3,PABC=4,M為線段AD上一點,AM=2MD,NPC的中點.

(1)證明MN∥平面PAB;

(2)求四面體NBCM的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,BD是正方形ABCD的對角線,弧的圓心是A,半徑為AB,正方形ABCD以AB為軸旋轉,求圖中Ⅰ,Ⅱ,Ⅲ三部分旋轉所得旋轉體的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù),ω>0,|φ|<)的一個零點與之相鄰的對稱軸之間的距離為,且fx)有最小值.

(1)求的解析式;

(2)若,求fx)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某數(shù)學教師對所任教的兩個班級各抽取20名學生進行測試,分數(shù)分布如表,若成績120分以上(含120分)為優(yōu)秀.

分數(shù)區(qū)間

甲班頻率

乙班頻率

[0,30)

0.1

0.2

[30,60)

0.2

0.2

[60,90)

0.3

0.3

[90,120)

0.2

0.2

[120,150]

0.2

0.1

優(yōu)秀

不優(yōu)秀

總計

甲班

乙班

總計

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

(Ⅰ)求從乙班參加測試的90分以上(含90分)的同學中,隨機任取2名同學,恰有1人為優(yōu)秀的概率;
(Ⅱ)根據以上數(shù)據完成上面的2×2列聯(lián)表:在犯錯概率小于0.1的前提下,你是否有足夠的把握認為學生的數(shù)學成績是否優(yōu)秀與班級有關?

查看答案和解析>>

同步練習冊答案