【題目】某品牌經(jīng)銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:
微信控 | 非微信控 | 合計 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有的把握認為“微信控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,再隨機抽取3人贈送禮品,試求抽取3人中恰有2人是“微信控”的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.050 | 0.040 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線:(為參數(shù)).以原點為極點,軸的正半軸為極軸建立極坐標系,曲線:.
(1)求的普通方程和的直角坐標方程;
(2)若曲線與交于,兩點,,的中點為,點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某地有三家工廠,分別位于矩形ABCD的頂點A,B以及CD的中點P處,已知AB=20km,CB=10km,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD內(nèi)(含邊界),且與A,B等距離的一點O處建造一個污水處理廠,并鋪設(shè)排污管道AO,BO,OP,設(shè)排污管道的總長為km.
(I)設(shè),將表示成的函數(shù)關(guān)系式;
(II)確定污水處理廠的位置,使三條排污管道的總長度最短,并求出最短值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
①已知向量與的夾角是鈍角,則實數(shù)的取值范圍是;
②函數(shù)與的圖像關(guān)于對稱;
③函數(shù)的最小正周期為;
④函數(shù)為周期函數(shù);
⑤函數(shù)的圖像關(guān)于點對稱的函數(shù)圖像的解析式為
其中正確命題的序號為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足,.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)給出定義:若s,t,r滿足,則稱s比t更接近于r,當x≥1時,試比較和哪個更接近,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=AD,點M在線段EF上。
(1)求證:BC⊥平面ACFE;
(2)若,求證:AM∥平面BDF.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,直線,.
(1)證明:不論取任何實數(shù),直線與圓恒交于兩點;
(2)當直線被圓截得的弦長最短時,求此最短弦長及直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù),
(1)設(shè)函數(shù)的定義域為A
①若,,,求實數(shù)c的值.
②若,,,求M的最小值
(2)若,對任意的,存在,使得不等式成立,求實數(shù)n的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com