(本小題滿分12分)已知動點M到點A(2,0)的距離是它到點B(8,0)的距離的一半,求:
(1) 動點M的軌跡方程;
(2) 若N為線段AM的中點,試求點N的軌跡.

(1) x2+y2=16; (2) 以(1,0)為圓心,2為半徑的圓.

解析試題分析:(1)設(shè)動點M(x,y)為軌跡上任意一點,則點M的軌跡就是集合P={M||MA|=|MB|}.
由兩點間距離公式,點M適合的條件可表示為
.
平方后再整理,得x2+y2=16.   可以驗證,這就是動點M的軌跡方程.
(2)設(shè)動點N的坐標(biāo)為(x,y),M的坐標(biāo)是(x1,y1).
由于A(2,0),且N為線段AM的中點,
所以x=,y=.
所以有x1=2x-2,y1=2y.①
由(1)知,M是圓x2+y2=16上的點,
所以M的坐標(biāo)(x1,y1)滿足=16.②
將①代入②整理,得(x-1)2+y2=4.     所以N的軌跡是以(1,0)為圓心,2為半徑的圓.
考點:軌跡方程的求法。
點評:求曲線的軌跡方程常采用的方法有直接法、定義法、相關(guān)點代入法、參數(shù)法。本題主要是利用直接法和相關(guān)點代入法,直接法是將動點滿足的幾何條件或者等量關(guān)系,直接坐標(biāo)化,列出等式化簡即得動點軌跡方程。相關(guān)點代入法 是根據(jù)相關(guān)點所滿足的方程,通過轉(zhuǎn)換而求動點的軌跡方程。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線,.
(Ⅰ)若,求實數(shù)的值;(2)當(dāng)時,求直線之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,在平面直角坐標(biāo)系xOy中,平行于x軸且過點A(3,2)的入射光線 l1
被直線l:y=x反射.反射光線l2y軸于B點,圓C過點A且與l1, l2都相切.

(1)求l2所在直線的方程和圓C的方程;
(2)設(shè)分別是直線l和圓C上的動點,求的最小值及此時點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知兩直線。求分別滿足下列條件的的值.
(1)直線過點,并且直線垂直;
(2)直線與直線平行,并且直線軸上的截距為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)
已知直線.求軸所圍成的三角形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知直線被兩平行直線所截得的線段長為9,且直線過點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分8分)已知直線經(jīng)過點,且垂直于直線,
(1)求直線的方程;(2)求直線與兩坐標(biāo)軸圍成三角形的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系xOy中,曲線C1的點均在C2:(x-5)2+y2=9外,且對C1上任意一點M,M到直線x=﹣2的距離等于該點與圓C2上點的距離的最小值.
(Ⅰ)求曲線C1的方程;
(1-4班做)(Ⅱ)設(shè)P(x0,y0)(y0≠±3)為圓C2外一點,過P作圓C2的兩條切線,分別與曲線C1相交于點A,B和C,D.證明:當(dāng)P在直線x=﹣4上運動時,四點A,B,C,D的縱坐標(biāo)之積為定值.
(5-7班做)(Ⅱ)設(shè)P(-4,1)為圓C2外一點,過P作圓C2的兩條切線,分別與曲線C1相交于點A,B和C,D.證明:四點A,B,C,D的縱坐標(biāo)之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

.(本小題滿分14分)
如圖,在邊長為10的正三角形紙片ABC的邊AB,AC上分別取D,E兩點,使沿線段DE折疊三角形紙片后,頂點A正好落在邊BC上(設(shè)為P),在這種情況下,求AD的最小值.

查看答案和解析>>

同步練習(xí)冊答案