圓柱形容器內(nèi)部盛有高度為8 cm的水,若放入三個相同的球(球的半徑與圓柱的底面半徑相同)后,水恰好淹沒最上面的球(如圖所示),則球的半徑是   _____cm.
4
:設球半徑為r,則由3V+V=V可得3×4/ 3 πr3+πr2×8=πr2×6r,解得r=4.
故答案為:4
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖示,邊長為2的正方形ABCD與正三角形ADP所在平面互相垂直,M是PC的中點。

(1)求證:∥平面;
(2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如下圖(圖1)等腰梯形上一點,且,,,沿著折疊使得二面角的二面角,連結(jié)、,在上取一點使得,連結(jié)得到如下圖(圖2)的一個幾何體.
(Ⅰ)求證:平面平面;
(Ⅱ)設,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過作圓柱的截面交下底面于.
(1)求證:
(2)若四邊形ABCD是正方形,求證
(3)在(2)的條件下,求二面角A-BC-E的平面角的一個三角函數(shù)值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示的長方體中,底面是邊長為的正方形,的交點,是線段的中點.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知正方形ABCD的邊長為2,,
將正方形ABCD沿對角線BD折起,使,得到三棱錐,如圖所示。
(1)當a=2時,求證:平面BCD;
(2)當二面角的大小為時,
求二面角的正切值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是正方體,點為正方體對角線的交點,過點的任一平面,正方體的八個頂點到平面的距離作為集合的元素,則集合中的元素個數(shù)最多為_____    ___個.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,正方體ABCD-中, AB的中點為M,D的中點為N,則異面直線M與CN所成的角是(  )
A.0B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若一個棱長為的正方體的各頂點都在半徑為R的球面上,則與R的關系是(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案