【題目】下列命題正確的是(

A.已知隨機變量,若.

B.已知分類變量的隨機變量的觀察值為,則當(dāng)的值越大時,有關(guān)的可信度越小.

C.在線性回歸模型中,計算其相關(guān)指數(shù),則可以理解為:解析變量對預(yù)報變量的貢獻率約為

D.若對于變量組統(tǒng)計數(shù)據(jù)的線性回歸模型中,相關(guān)指數(shù).又知殘差平方和為.那么.(注意:

【答案】ACD

【解析】

選項A,根據(jù)正態(tài)分布曲線的特點,關(guān)于直線對稱,求出,即可判斷;

選項B,根據(jù)獨立性檢驗的方法和步驟,即可判斷;

選項C,根據(jù)相關(guān)指數(shù)的意義即可判斷;

選項D,根據(jù)相關(guān)指數(shù)的計算公式即可判斷.

解:對于選項A,曲線關(guān)于對稱,由,則,則,選項A正確;

對于選項B,對分類變量的隨機變量的觀察值來說,越大,有關(guān)的可信度越大,選項B錯誤;

對于選項C,解析變量對預(yù)報變量的貢獻率約為,選項C正確;

對于選項D,根據(jù)公式,其中,代入求出,選項D正確.

故選:ACD.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)當(dāng)時,求的單調(diào)區(qū)間;

2)當(dāng),討論的零點個數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是正方形ABCD的外接圓,P在劣弧AB(P不與A、B重合),DP分別交AO、AB于點Q、T, 在點P處的切線交DA的延長線于點E,劣弧BC的中點為F.

(1):何時F、T、E三點共線?請說明理由.

(2)求比值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某縣共有90間農(nóng)村淘寶服務(wù)站,隨機抽取5間,統(tǒng)計元旦期間的網(wǎng)購金額(單位:萬元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).若網(wǎng)購金額(單位:萬元)不小于18的服務(wù)站定義為優(yōu)秀服務(wù)站,其余為非優(yōu)秀服務(wù)站.從隨機抽取的5間服務(wù)站中再任取2間作網(wǎng)購商品的調(diào)查,則恰有1間是優(yōu)秀服務(wù)站的概率為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCDA1B1C1D1中,P,Q分別為棱BC和棱CC1的中點,則下列說法正確的是( )

A.BC1//平面AQP

B.平面APQ截正方體所得截面為等腰梯形

C.A1D⊥平面AQP

D.異面直線QPA1C1所成的角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以橢圓的2個焦點與1個短軸端點為頂點的三角形的面積為2

(1)求橢圓的方程;

(2)如圖,斜率為k的直線l過橢圓的右焦點F,且與橢圓交與A,B兩點,以線段AB為直徑的圓截直線x=1所得的弦的長度為,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,圓.

(1)若拋物線的焦點在圓上,且和圓 的一個交點,求;

(2)若直線與拋物線和圓分別相切于點,求的最小值及相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正整數(shù)數(shù)列滿足,試求通項公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020110日,引發(fā)新冠肺炎疫情的COVID-9病毒基因序列公布后,科學(xué)家們便開始了病毒疫苗的研究過程.但是類似這種病毒疫苗的研制需要科學(xué)的流程,不是一朝一夕能完成的,其中有一步就是做動物試驗.已知一個科研團隊用小白鼠做接種試驗,檢測接種疫苗后是否出現(xiàn)抗體.試驗設(shè)計是:每天接種一次,3天為一個接種周期.已知小白鼠接種后當(dāng)天出現(xiàn)抗體的概率為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)抗體與上次接種無關(guān).

1)求一個接種周期內(nèi)出現(xiàn)抗體次數(shù)的分布列;

2)已知每天接種一次花費100元,現(xiàn)有以下兩種試驗方案:

①若在一個接種周期內(nèi)連續(xù)2次出現(xiàn)抗體即終止本周期試驗,進行下一接種周期,試驗持續(xù)三個接種周期,設(shè)此種試驗方式的花費為元;

②若在一個接種周期內(nèi)出現(xiàn)2次或3次抗體,該周期結(jié)束后終止試驗,已知試驗至多持續(xù)三個接種周期,設(shè)此種試驗方式的花費為元.

比較隨機變量的數(shù)學(xué)期望的大小.

查看答案和解析>>

同步練習(xí)冊答案