【題目】在平面直角坐標(biāo)系中,拋物線C的頂點(diǎn)在原點(diǎn)O,過點(diǎn),其焦點(diǎn)F在x軸上.
求拋物線C的標(biāo)準(zhǔn)方程;
斜率為1且與點(diǎn)F的距離為的直線與x軸交于點(diǎn)M,且點(diǎn)M的橫坐標(biāo)大于1,求點(diǎn)M的坐標(biāo);
是否存在過點(diǎn)M的直線l,使l與C交于P、Q兩點(diǎn),且若存在,求出直線l的方程;若不存在,說明理由.
【答案】(1);(2);(3)見解析.
【解析】
(1)設(shè)的方程為,其過點(diǎn),解得m值,從而得到結(jié)果;
(2)設(shè)的方程為,利用點(diǎn)到直線距離得到,又點(diǎn)的橫坐標(biāo)大于,從而得到點(diǎn)的坐標(biāo);
(3)設(shè)的方程為,代入拋物線方程可得,結(jié)合韋達(dá)定理即可作出判斷.
(1)設(shè)的方程為
則
的方程為
(2)點(diǎn)的坐標(biāo)為
設(shè)的方程為
則
與軸的交點(diǎn)為,
又>
點(diǎn)的坐標(biāo)為
(3)設(shè)的方程為,,Q
由 得
,
要,則要,即不成立
不存在滿足條件的直線.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xex﹣a(lnx+x).
(1)若函數(shù)f(x)恒有兩個零點(diǎn),求a的取值范圍;
(2)若對任意x>0,恒有不等式f(x)≥1成立. ①求實(shí)數(shù)a的值;
②證明:x2ex>(x+2)lnx+2sinx.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù))以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系.
(1)寫出直線l的普通方程以及曲線C的極坐標(biāo)方程;
(2)若直線l與曲線C的兩個交點(diǎn)分別為M,N,直線l與x軸的交點(diǎn)為P,求|PM||PN|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐P﹣ABC中,AP=AB,平面PAB⊥平面ABC,∠ABC=90°,D,E分別為PB,BC的中點(diǎn).
(1)求證:DE∥平面PAC;
(2)求證:DE⊥AD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某算法的程序框圖,若程序運(yùn)行后輸出的結(jié)果是14,則判斷框內(nèi)填入的條件可以是( )
A.S≥10?
B.S≥14?
C.n>4?
D.n>5?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大提出,堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機(jī)摘下了100個蜜柚進(jìn)行測重,其質(zhì)量分別在, , , , , (單位:克)中,其頻率分布直方圖如圖所示.
(1)求質(zhì)量落在, 兩組內(nèi)的蜜柚的抽取個數(shù),
(2)從質(zhì)量落在, 內(nèi)的蜜柚中隨機(jī)抽取2個,求這2個蜜柚質(zhì)量均小于2000克的概率;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年美國總統(tǒng)大選過后,有媒體從某公司的全體員工中隨機(jī)抽取了200人,對他們的投票結(jié)果進(jìn)行了統(tǒng)計(不考慮棄權(quán)等其他情況),發(fā)現(xiàn)支持希拉里的一共有95人,其中女員工55人,支持特朗普的男員工有60人.
(Ⅰ)根據(jù)已知條件完成下面的2×2列聯(lián)表:據(jù)此材料,是否有95%的把握認(rèn)為投票結(jié)果與性別有關(guān)?
支持希拉里 | 支持特朗普 | 合計 | |
男員工 | |||
女員工 | |||
合計 |
(Ⅱ)若從該公司的所有男員工中隨機(jī)抽取3人,記其中支持特朗普的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.(用相應(yīng)的頻率估計概率)
附:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:K2= ,其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x)滿足f(x)=x2﹣2x﹣3(x>0).
(Ⅰ) 若函數(shù)g(x)=|f(x)|﹣a有4個零點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅱ) 求|f(x+1)|≤4的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知四棱錐P—ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F分別是BC,PC的中點(diǎn).
(1)證明:AE⊥PD;
(2)若H為PD上的動點(diǎn),EH與平面PAD所成最大角的正切值為,
求二面角E—AF—C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com