精英家教網 > 高中數學 > 題目詳情
已知向量
OA
=(1,0),
OB
=(1,1),則|
AB
|等于(  )
A、1
B、
2
C、2
D、
5
分析:利用向量的坐標運算和模的計算公式即可得出.
解答:解:∵
AB
=
OB
-
OA
=(1,1)-(1,0)=(0,1).
|
AB
|=
02+12
=1.
故選:A.
點評:本題考查了向量的坐標運算和模的計算公式,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
OA
=(1,-3),
OB
=(2,-1),
OC
=(m+1,m-2),若點A、B、C能構成三角形,則實數m應滿足的條件是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
OA
=(1,-3),
OB
=(2,-1),
OC
=(m+1,m-2),若點A、B、C能構成三角形,則實數m應滿足的條件是(  )
A、m≠-2
B、m≠
1
2
C、m≠1
D、m≠-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
OA
=(1,-2),
OB
=(a,-1),
OC
=(-b,0)(其中a>0,b>0,O是坐標原點),若A,B,C三點共線,則
1
a
+
2
b
的最小值為
8
8

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
.
OA
=(1,7),
.
OB
=(5,1),
.
OP
=(2,1),點Q為直線OP上一動點.
(Ⅰ)當
.
QA
.
OP
,求
.
OQ
的坐標;
(Ⅱ)當
.
OA
.
QB
取最小值時,求
.
OQ
的坐標.

查看答案和解析>>

同步練習冊答案