【題目】已知數列{an}的前項和為,數列{bn},{cn}滿足, ,其中.
(1)若數列{an}是公差為2的等差數列,求數列{cn}的通項公式;
(2)若存在實數λ,使得對一切,有bn≤λ≤cn,求證:數列{an}是等差數列.
【答案】(1)cn=1.(2)見解析.
【解析】試題分析:(1)由題意得,根據等差數列的通項公式求得,即可的通項公式;
(2)由,遞推化簡,得到,因為一切,都有,得到,得到,再利用等差數列的性質,即可得到數列為等差數列。
試題解析: (1)因為{an}是公差為2的等差數列,
所以an=a1+2(n-1),=a1+n-1,從而 (n+2)
cn=-(a1+n-1)=n+2,即cn=1.
(2)由(n+1)bn=an+1-,
得n(n+1) bn=nan+1-Sn,
(n+1)(n+2) bn+1=(n+1)an+2-Sn+1,
兩式相減,并化簡得an+2-an+1=(n+2) bn+1-nbn.
從而 (n+2) cn=-=-[an+1-(n+1) bn]
=+(n+1) bn
=+(n+1) bn
= (n+2)( bn+bn+1).
因此cn= ( bn+bn+1).
因為對一切n∈N*,有bn≤λ≤cn,所以λ≤cn= (bn+bn+1)≤λ,
故bn=λ,cn=λ.
所以 (n+1)λ=an+1-, ①
(n+2)λ= (an+1+an+2)-, ②
②-①,得 (an+2-an+1)=λ,即an+2-an+1=2λ.
故an+1-an=2λ (n≥2).
又2λ=a2-=a2-a1,則an+1-an=2λ (n≥1).
所以數列{an}是等差數列.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= -,g(x)= .
(1)若,函數的圖像與函數的圖像相切,求的值;
(2)若, ,函數滿足對任意(x1x2),都有恒成立,求的取值范圍;
(3)若,函數=f(x)+ g(x),且G()有兩個極值點x1,x2,其中x1,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列中, ,前項和滿足().
⑴ 求數列的通項公式;
⑵ 記,求數列的前項和;
⑶ 是否存在整數對(其中, )滿足?若存在,求出所有的滿足題意的整數對;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著資本市場的強勢進入,互聯網共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中抽取了200人進行抽樣分析,得到表格:(單位:人)
經常使用 | 偶爾或不用 | 合計 | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據以上數據,能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?
(2)現從所抽取的30歲以上的網友中利用分層抽樣的方法再抽取5人.從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經常使用共享單車的概率.
參考公式: ,其中.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直三棱柱中,,,是的中點,是等腰三角形,為的中點,為上一點.
(I)若平面,求;
(II)平面將三棱柱分成兩個部分,求較小部分與較大部分的體積之比.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com