設數(shù)列{an}前n項和為Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m為實常數(shù),m≠-3且m≠0.
(1)求證:{an}是等比數(shù)列;
(2)若數(shù)列{an}的公比滿足q=f(m)且,求{bn}的通項公式;
(3)若m=1時,設Tn=a1+2a2+3a3+…+nan(n∈N*),是否存在最大的正整數(shù)k,使得對任意n∈N*均有成立,若存在求出k的值,若不存在請說明理由.
【答案】分析:(1)由(3-m)Sn+2man=m+3,得(3-m)Sn+1+2man+1=m+3,由此能夠證明{an}是等比數(shù)列.
(2)由,知n≥2時,,所以是以1為首項,為公差的等差數(shù)列,由此能求出
(3)由,知,由此能求出k的最大值.
解答:解:(1)由(3-m)Sn+2man=m+3,
得(3-m)Sn+1+2man+1=m+3,
兩式相減,得(3+m)an+1=2man(m≠-3),
,
∵m是常數(shù),且m≠-3,m≠0,
為不為0的常數(shù),
∴{an}是等比數(shù)列.
(2)由,
且n≥2時,,

是以1為首項,為公差的等差數(shù)列,
,

(3)由已知,

相減得:,

,
Tn遞增,
,
對n∈N*均成立,
,
又k∈N*,∴k最大值為7.
點評:本題考查數(shù)列的綜合運用,解題時要認真審題,仔細解答,合理地運用錯位相減法進行證明.注意挖掘題設中的隱含條件,合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an} 前n項和Sn=
n(an+1)2
,n∈N*且a2=a

(1)求數(shù)列{an} 的通項公式an
(2)若a=3,Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1,求T100的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}前n項和Sn,且Sn=2an-2,n∈N+
(Ⅰ)試求數(shù)列{an}的通項公式;
(Ⅱ)設cn=
nan
,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}前n項和為Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m為實常數(shù),m≠-3且m≠0.
(1)求證:{an}是等比數(shù)列;
(2)若數(shù)列{an}的公比滿足q=f(m)且b1=a1,bn=
3
2
f(bn-1)(n∈N*,n≥2)
,求{bn}的通項公式;
(3)若m=1時,設Tn=a1+2a2+3a3+…+nan(n∈N*),是否存在最大的正整數(shù)k,使得對任意n∈N*均有Tn
k
8
成立,若存在求出k的值,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}前n項和為Sn,已知a1=a(a≠4),an+1=2Sn+4n(n∈N*
(Ⅰ)設b n=Sn-4n,求證:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)若an+1≥an(n∈N*),求實數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}前n項和為Sn,首項為x(x∈R),滿足Sn=nan-
n(n-1)2
,n∈N+
(1)求證:數(shù)列{an}為等差數(shù)列;
(2)求證:若數(shù)列{an}中存在三項構成等比數(shù)列,則x為有理數(shù).

查看答案和解析>>

同步練習冊答案