【題目】“﹣3<a<1”是“存在x∈R,使得|x﹣a|+|x+1|<2”的(
A.充分非必要條件
B.必要非充分條件
C.充要條件
D.既非充分又非必要條件

【答案】C
【解析】解:根據(jù)絕對(duì)值不等式的性質(zhì)得|x﹣a|+|x+1|≥|x﹣a﹣x﹣1|=|a+1|, 即|x﹣a|+|x+1|的最小值為|a+1|,
若“存在x∈R,使得|x﹣a|+|x+1|<2”,
則|a+1|<2,即﹣2<a+1<2,
得﹣3<a<1,
即“﹣3<a<1”是“存在x∈R,使得|x﹣a|+|x+1|<2”的充要條件,
故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用反證法證明命題“三角形的內(nèi)角至多有一個(gè)鈍角”時(shí),假設(shè)的內(nèi)容應(yīng)為( )
A.假設(shè)至少有一個(gè)鈍角
B.假設(shè)至少有兩個(gè)鈍角
C.假設(shè)沒(méi)有一個(gè)鈍角
D.假設(shè)沒(méi)有一個(gè)鈍角或至少有兩個(gè)鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是R上的偶函數(shù),且在[0,+∞)上單調(diào)遞增,則f(﹣2),f(3),f(﹣π)的大小順序是(
A.f(﹣π)>f(3)>f(﹣2)
B.f(﹣π)>f(﹣2)>f(3)
C.f(﹣2)>f(3)>f(﹣π)
D.f(3)>f(﹣2)>f(﹣π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某年級(jí)有1000名學(xué)生,隨機(jī)編號(hào)為0001,0002,…,1000,現(xiàn)用系統(tǒng)抽樣方法,從中抽出200人,若0122號(hào)被抽到了,則下列編號(hào)也被抽到的是(
A.0116
B.0927
C.0834
D.0726

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合M={(x,y)||x|+|y|≤1},若實(shí)數(shù)對(duì)(λ,μ)滿(mǎn)足:對(duì)任意的(x,y)∈M,都有(λx,μy)∈M,則稱(chēng)(λ,μ)是集合M的“嵌入實(shí)數(shù)對(duì)”.則以下集合中,不存在集合M的“嵌入實(shí)數(shù)對(duì)”的是(
A.{(λ,μ)|λ﹣μ=2}
B.{(λ,μ)|λ+μ=2}
C.{(λ,μ)|λ2﹣μ2=2}
D.{(λ,μ)|λ22=2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】集合{x∈N|x<5}的另一種表示法是(
A.{1,2,3,4}
B.{0,1,2,3,4}
C.{1,2,3,4,5}
D.{0,1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={﹣1,1},集合B={x|ax=1,a∈R},則使得BA的a的所有取值構(gòu)成的集合是(
A.{0,1}
B.{0,﹣1}
C.{1,﹣1}
D.{﹣1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的通項(xiàng)公式為an=n2+bn,若數(shù)列{an}是單調(diào)遞增數(shù)列,則實(shí)數(shù)b的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)α,β為兩個(gè)不同的平面,l為直線(xiàn),則下列結(jié)論正確的是(
A.l∥α,α⊥βl⊥α
B.l⊥α,α⊥βl∥α
C.l∥α,α∥βl∥β
D.l⊥α,α∥βl⊥β

查看答案和解析>>

同步練習(xí)冊(cè)答案