【題目】已知關(guān)于x的不等式|x﹣2|﹣|x+3|≥|m+1|有解,記實(shí)數(shù)m的最大值為M.
(1)求M的值;
(2)正數(shù)a,b,c滿足a+2b+c=M,求證: + ≥1.

【答案】
(1)解:由絕對(duì)值不等式得|x﹣2|﹣|x+3|≥≤|x﹣2﹣(x+3)|=5,

若不等式|x﹣2|﹣|x+3|≥|m+1|有解,

則滿足|m+1|≤5,解得﹣6≤m≤4.

∴M=4.


(2)解:由(1)知正數(shù)a,b,c滿足足a+2b+c=4,即 [(a+b)+(b+c)]=1

+ = [(a+b)+(b+c)]( + )= (1+1+ + )≥ (2+2 )≥ ×4=1,

當(dāng)且僅當(dāng) = 即a+b=b+c=2,即a=c,a+b=2時(shí),取等號(hào).

+ ≥1成立


【解析】(1)根據(jù)絕對(duì)值不等式的性質(zhì)進(jìn)行轉(zhuǎn)化求解.(2)利用1的代換,結(jié)合基本不等式的性質(zhì)進(jìn)行證明即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知四棱錐PABCD,底面ABCD為菱形,PA平面ABCD,ABC=60°,E,F分別是BC,PC的中點(diǎn).

(1)證明:AEPD;

(2)HPD上的動(dòng)點(diǎn),EH與平面PAD所成最大角的正切值為,

求二面角EAFC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

Ⅰ)求函數(shù)的最小值和最小正周期;

Ⅱ)已知內(nèi)角的對(duì)邊分別為,且,若向量共線,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,CA=CB,側(cè)面ABB1A1是邊長(zhǎng)為2的正方形,點(diǎn)E,F(xiàn)分別在線段AA1、A1B1上,且AE= ,A1F= ,CE⊥EF.
(Ⅰ)證明:平面ABB1A1⊥平面ABC;
(Ⅱ)若CA⊥CB,求直線AC1與平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在棱錐中,側(cè)面是邊長(zhǎng)為2的正三角形,底面是菱形,且,的中點(diǎn),二面角.

(1)求證:平面

(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a>0,b>0,若關(guān)于x,y的方程組 無解,則a+b的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是等比數(shù)列,則下列結(jié)論中正確的是( )

A. 若a1=1,a5=4,則a3=﹣2

B. 若a1+a3>0,則a2+a4>0

C. 若a2>a1,則a3>a2

D. 若a2>a1>0,則a1+a3>2a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知x>0,y>0,x+y+xy=8,則x+y的最小值?

(2)已知不等式的解集為{x|a≤x<b},點(diǎn)(a,b)在直線mx+ny+1=0上,其中m,n>0,若對(duì)任意滿足條件的m,n,恒有成立,則λ的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,且,點(diǎn)是棱的中點(diǎn),平面與棱交于點(diǎn)

(1)求證:

(2)若,且平面平面,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案