設(shè)F(x)=3a+2bx+c,若a+b+c=0,且F(0)>0,F(xiàn)(1)>0.
求證:a>0,且—2<<—1.

主要求出F(0)和F(1)

解析試題分析:證明:由題意,
,所以.
注意到,又,所以,即
,,
所以,即.
綜上:,且
考點(diǎn):不等關(guān)系與不等式.
點(diǎn)評(píng):本題主要考查二次函數(shù)的基本性質(zhì)與不等式的應(yīng)用等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)對(duì)于任意實(shí)數(shù),恒成立,求的最大值;
(2)若方程有且僅有一個(gè)實(shí)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)設(shè),,證明:在區(qū)間內(nèi)存在唯一的零點(diǎn);
(2) 設(shè),若對(duì)任意,有,求的取值范圍;
(3)在(1)的條件下,設(shè)內(nèi)的零點(diǎn),判斷數(shù)列的增減性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為常數(shù)).
(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(2)若,且對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),其中是常數(shù),且
(1)求函數(shù)的極值;
(2)證明:對(duì)任意正數(shù),存在正數(shù),使不等式成立;
(3)設(shè),且,證明:對(duì)任意正數(shù)都有:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)時(shí),在曲線上是否存在兩點(diǎn),使得曲線在兩點(diǎn)處的切線均與直線交于同一點(diǎn)?若存在,求出交點(diǎn)縱坐標(biāo)的取值范圍;若不存在,請(qǐng)說明理由;
(Ⅲ)若在區(qū)間存在最大值,試構(gòu)造一個(gè)函數(shù),使得同時(shí)滿足以下三個(gè)條件:①定義域,且;②當(dāng)時(shí),;③在中使取得最大值時(shí)的值,從小到大組成等差數(shù)列.(只要寫出函數(shù)即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),曲線在點(diǎn)處的切線方程為
(1)確定的值
(2)若過點(diǎn)(0,2)可做曲線的三條不同切線,求的取值范圍
(3)設(shè)曲線在點(diǎn)處的切線都過點(diǎn)(0,2),證明:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/df/c/1kgq03.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)判斷函數(shù)的單調(diào)性;
(Ⅲ)若對(duì)任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:是一次函數(shù),其圖像過點(diǎn),且,求的解析式。

查看答案和解析>>

同步練習(xí)冊(cè)答案