【題目】如圖,在ABC中,∠BAB8,點DBC邊上,CD2,cosADC.

1)求sinBAD

2)求BD,AC的長.

【答案】12AC7.

【解析】

1)根據(jù)sinBADsin(ADC-∠B),利用和差公式求解;

2)在ABD中,利用正弦定理即可求解BD,在ABC中結(jié)合余弦定理求解.

1)在ADC中,因為cosADC,所以sinADC.

所以sinBADsin(ADC-∠B)

sinADC cos BcosADC sin B

=.

2)在ABD中,由正弦定理,得

BD.

ABC中,由余弦定理,得

AC2AB2BC22AB×BC×cos B

82522×8×5×49.

所以AC7.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)內(nèi)有兩個極值點x1,x2x1x2),其中a為常數(shù).

1)求實數(shù)a的取值范圍;

2)求證:x1+x22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)有如下四個結(jié)論:

是偶函數(shù);②在區(qū)間上單調(diào)遞增;③最大值為;④上有四個零點,其中正確命題的序號是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 某工廠甲、乙兩個車間包裝同一種產(chǎn)品,在自動包裝傳送帶上,每隔30分鐘抽一包產(chǎn)品,稱其重量是否合格,分別記錄抽查數(shù)據(jù)如下(單位:千克)

甲車間:102101,99,98,103,98,99.

乙車間:110,11590,85,75115,110.

1)這種抽樣方式是何種抽樣方法;

2)試根據(jù)這組數(shù)據(jù)說明哪個車間產(chǎn)品較穩(wěn)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC的內(nèi)角A,B,C的對邊分別為ab,c,若a=bcosC+csinB

1)求B

2)求y=sinA-sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,若(ac·cos B)·sin B=(bc·cos A)·sin A,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)文化的優(yōu)秀遺產(chǎn),數(shù)學(xué)家劉徽在注解《九章算術(shù)》時,發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊行的邊數(shù)無限增加時,多邊形的面積可無限逼近圓的面積,為此他創(chuàng)立了割圓術(shù),利用割圓術(shù),劉徽得到了圓周率精確到小數(shù)點后四位3.1416,后人稱3.14為徽率,如圖是利用劉徽的割圓術(shù)設(shè)計的程序框圖,若結(jié)束程序時,則輸出的為( )(,,

A. 6 B. 12 C. 24 D. 48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域為R的偶函數(shù)f(x)滿足對xR,有f(x+2)=f(x)﹣f(1),且當(dāng)x[2,3]時,f(x)=﹣2x2+12x18,若函數(shù)yf(x)﹣loga(|x|+1)至少有6個零點,則a的取值范圍是( )

A.(0,)B.(0,)C.(0,)D.(0,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】羅馬數(shù)字是歐洲在阿拉伯?dāng)?shù)字傳入之前使用的一種數(shù)碼,它的產(chǎn)生標(biāo)志著一種古代文明的進步.羅馬數(shù)字的表示法如下:

數(shù)字

1

2

3

4

5

6

7

8

9

形式

其中需要1根火柴,“X”需要2根火柴,若為0,則用空位表示. (如123表示為405表示為)如果把6根火柴以適當(dāng)?shù)姆绞饺糠湃胂旅娴谋砀裰,那么可以表示的不同的三位?shù)的個數(shù)為(

A.87B.95C.100D.103

查看答案和解析>>

同步練習(xí)冊答案