(06年上海卷理)(12分)

求函數(shù)=2的值域和最小正周期.

解析:

            

 ∴ 函數(shù)的值域是,最小正周期是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(06年上海卷理)(14分)在四棱錐P-ABCD中,底面是邊長(zhǎng)為2的菱形,∠DAB=60,對(duì)角線AC與BD相交于點(diǎn)O,PO⊥平面ABCD,PB與平面ABCD所成的角為60

(1)求四棱錐P-ABCD的體積;

(2)若E是PB的中點(diǎn),求異面直線DE與PA所成角的大小(結(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(06年上海卷理)(14分)在四棱錐P-ABCD中,底面是邊長(zhǎng)為2的菱形,∠DAB=60,對(duì)角線AC與BD相交于點(diǎn)O,PO⊥平面ABCD,PB與平面ABCD所成的角為60

(1)求四棱錐P-ABCD的體積;

(2)若E是PB的中點(diǎn),求異面直線DE與PA所成角的大。ńY(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(06年上海卷理)(16分)

已知有窮數(shù)列共有2項(xiàng)(整數(shù)≥2),首項(xiàng)=2.設(shè)該數(shù)列的前項(xiàng)和為,且+2(=1,2,┅,2-1),其中常數(shù)>1.

(1)求證:數(shù)列是等比數(shù)列;

(2)若=2,數(shù)列滿足=1,2,┅,2),求數(shù)列的通項(xiàng)公式;

(3)若(2)中的數(shù)列滿足不等式||+||+┅+||+||≤4,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(06年上海卷理)(18分)

已知函數(shù)有如下性質(zhì):如果常數(shù)>0,那么該函數(shù)在0,上是減函數(shù),在,+∞上是增函數(shù).

(1)如果函數(shù)>0)的值域?yàn)?IMG height=21 src='http://thumb.zyjl.cn/pic1/img/20090331/20090331160352008.gif' width=9>6,+∞,求的值;

(2)研究函數(shù)(常數(shù)>0)在定義域內(nèi)的單調(diào)性,并說明理由;

(3)對(duì)函數(shù)(常數(shù)>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)是正整數(shù))在區(qū)間[,2]上的最大值和最小值(可利用你的研究結(jié)論).

查看答案和解析>>

同步練習(xí)冊(cè)答案