(12分)在中,角所對(duì)的邊分別為,已知,,,求.

解析試題分析:該題為在中求余弦,而三角形中求邊或是求角一般都使用正弦定理以及余弦定理解決;本題中,已知兩邊以及一角,所以使用余弦定理求第三邊 ,再根據(jù)三邊,利用余弦定理求.
試題解析:由余弦定理得:,∴,
.
考點(diǎn):余弦定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,某旅游景點(diǎn)有一座風(fēng)景秀麗的山峰,山上有一條筆直的山路BC和一條索道AC,小王和小李打算不坐索道,而是花2個(gè)小時(shí)的時(shí)間進(jìn)行徒步攀登.已知,,(千米),(千米).假設(shè)小王和小李徒步攀登的速度為每小時(shí)1200米,請(qǐng)問:兩位登山愛好者能否在2個(gè)小時(shí)內(nèi)徒步登上山峰.
(即從B點(diǎn)出發(fā)到達(dá)C點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,角,,所對(duì)的邊分別是,,且滿足
(1)求角的大;
(2)求的最大值,并求取得最大值時(shí)角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在DABC中,角A、B、C的對(duì)邊分別為a、b、c,且角A、B都是銳角,a=6,b=5,.
(1) 求的值;
(2) 設(shè)函數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)的內(nèi)角所對(duì)的邊分別為,且有
(1)求的值;
(2)若,上一點(diǎn).且,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,設(shè)函數(shù),若函數(shù)的圖象與的圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱.
(1)求函數(shù)在區(qū)間上的最大值,并求出此時(shí)的取值;
(2)在中,分別是角的對(duì)邊,若,,,求邊的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某人在汽車站M的北偏西20°的方向上的A處(如圖所示),觀察到C處有一輛汽車沿公路向M站行駛,公路的走向是M站的北偏東40°.開始時(shí),汽車到A處的距離為31km,汽車前進(jìn)20km后,到A處的距離縮短了10km.問汽車還需行駛多遠(yuǎn),才能到達(dá)汽車站M?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)A、B兩點(diǎn)在河的兩岸,一測(cè)量者在A所在的河岸邊選定一點(diǎn)C,測(cè)出AC的距離為50m,∠ACB=45°,∠CAB=105°,求A、B兩點(diǎn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知△ABC的內(nèi)角為AB、C,其對(duì)邊分別為a、b、c,B為銳角,向量m=(2sin B,-),n,且mn
(1)求角B的大;
(2)如果b=2,求SABC的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案