精英家教網 > 高中數學 > 題目詳情

一條直線經過點P(3,2),并且分別滿足下列條件,求直線方程:

(1)傾斜角是直線x-4y+3=0的傾斜角的2倍;

(2)與xy軸的正半軸交于A、B兩點,且△AOB的面積最。O為坐標原點).

(1)8x-15y+6=0.(2)2x+3y-12=0.


解析:

(1)設所求直線傾斜角為θ,已知直線的傾斜角為α,則θ=2α,且tanα,tanθ=tan2α,從而方程為8x-15y+6=0.

(2)設直線方程為=1,a>0,b>0,代入P(3,2),得=1≥2,得ab≥24,從而SAOBab≥12,此時,∴k=-=-.

∴方程為2x+3y-12=0

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

一條直線經過點P(3,2),并且分別滿足下列條件,求直線方程:
(1)傾斜角是直線x-4y+3=0的傾斜角的2倍;
(2)與x、y軸的正半軸交于A、B兩點,且△AOB的面積最小(O為坐標原點)

查看答案和解析>>

科目:高中數學 來源:2010年甘肅省高二上學期期中考試數學試卷 題型:解答題

(12分)一條直線經過點P(3,2),并且分別滿足下列條件,求直線方程:

(1)傾斜角是直線x-4y+3=0的傾斜角的2倍;

(2)與x、y軸的正半軸交于A、B兩點,且△AOB的面積最。O為坐標原點).

 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

一條直線經過點P(3,2),并且分別滿足下列條件,求直線方程:
(1)傾斜角是直線x-4y+3=0的傾斜角的2倍;
(2)與x、y軸的正半軸交于A、B兩點,且△AOB的面積最。∣為坐標原點)

查看答案和解析>>

科目:高中數學 來源:2006年高考第一輪復習數學:7.1 直線的方程(解析版) 題型:解答題

一條直線經過點P(3,2),并且分別滿足下列條件,求直線方程:
(1)傾斜角是直線x-4y+3=0的傾斜角的2倍;
(2)與x、y軸的正半軸交于A、B兩點,且△AOB的面積最。∣為坐標原點)

查看答案和解析>>

同步練習冊答案