分析 (1)若a=1,則f(x)=$\left\{\begin{array}{l}({x}^{2}-1)-2lnx,x≥1\\{e}^{x-1}-x,x<1\end{array}\right.$.f′(x)=$\left\{\begin{array}{l}2x-\frac{2}{x},x≥1\\{e}^{x-1}-1,x<1\end{array}\right.$,分析函數(shù)的單調(diào)性,可得當(dāng)x=1時,函數(shù)f(x)取最小值0;
(2)f(x)=$\left\{\begin{array}{l}{a({x}^{2}-1)-2lnx,x≥a}\\{{e}^{x-1}+(a-2)x,x<a}\end{array}\right.$.f′(x)=$\left\{\begin{array}{l}2ax-\frac{2}{x},x≥a\\{e}^{x-1}+a-2,x<a\end{array}\right.$,求出函數(shù)的最小值,分析最小值的符號,可得答案.
解答 解:(1)若a=1,則f(x)=$\left\{\begin{array}{l}({x}^{2}-1)-2lnx,x≥1\\{e}^{x-1}-x,x<1\end{array}\right.$.
f′(x)=$\left\{\begin{array}{l}2x-\frac{2}{x},x≥1\\{e}^{x-1}-1,x<1\end{array}\right.$,
當(dāng)x<1時,f′(x)<0,函數(shù)為減函數(shù);
當(dāng)x≥1時,f′(x)≥0,函數(shù)為增函數(shù);
故當(dāng)x=1時,函數(shù)f(x)取最小值0;
(2)f(x)=$\left\{\begin{array}{l}{a({x}^{2}-1)-2lnx,x≥a}\\{{e}^{x-1}+(a-2)x,x<a}\end{array}\right.$.
f′(x)=$\left\{\begin{array}{l}2ax-\frac{2}{x},x≥a\\{e}^{x-1}+a-2,x<a\end{array}\right.$,
當(dāng)x<a時,f′(x)<0,函數(shù)為減函數(shù);
當(dāng)x≥a時,f′(x)≥0,函數(shù)為增函數(shù);
故當(dāng)x=a時,函數(shù)f(x)取最小值a3-a-2lna,
∵a>1,∴a3-a-2lna>0,
故函數(shù)f(x)不存在零點.
點評 本題考查的知識點是分段函數(shù)的應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求函數(shù)的最值,難度中檔.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1] | B. | (-1,0] | C. | [1,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-4,$\frac{3}{4}$] | B. | (-∞,-4]∪[$\frac{3}{4}$,+∞) | C. | (-4,$\frac{3}{4}$]∪[4,+∞) | D. | [-$\frac{3}{4}$,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 表示某同學(xué)參加高考報名的程序 | |
B. | 表示某企業(yè)生產(chǎn)某種產(chǎn)品的生產(chǎn)工序 | |
C. | 表示某圖書館的圖書借閱程序 | |
D. | 表示某單位的各部門的分工情況 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{10}$ | D. | 10 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com