10.定義函數(shù)y=f(x),x∈D(定義域),若存在常數(shù)C,對(duì)于任意x1∈D,存在唯一的x2∈D,使得$\frac{{f({x_1})+f({x_2})}}{2}$=C,則稱函數(shù)f(x)在D上的“均值”為C,已知f(x)=lgx,x∈[10,100],則函數(shù)f(x)在[10,100]上的均值為( 。
A.$\frac{3}{2}$B.$\frac{3}{4}$C.$\frac{1}{10}$D.10

分析 根據(jù)新定義,直接求解.

解答 解:由題意:f(x)=lgx,x∈[10,100],那么f(10)=1,f(100)=2.
根據(jù)新定義:$\frac{{f({x_1})+f({x_2})}}{2}$=C,
∴C=$\frac{f(10)+f(100)}{2}=\frac{1+2}{2}=\frac{3}{2}$.
故選A.

點(diǎn)評(píng) 本題考查了對(duì)新定義的理解和運(yùn)用.讀懂題意即可計(jì)算.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)f(x)=$\left\{\begin{array}{l}{a({x}^{2}-1)-2lnx,x≥a}\\{{e}^{x-1}+(a-2)x,x<a}\end{array}\right.$.
(1)若a=1,求f(x)的最小值;
(2)若a>1,討論f(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若f(x)+4f(-x)=log2(x+3),則f(1)=$\frac{2}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知f(x)=x2+ax對(duì)以任意的a∈[-2,2]都有f(x)≥3-a成立,則x的取值范圍是x$≤-1-\sqrt{2}$或x$≥1+\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知曲線f(x)=e2x+$\frac{1}{ax}$(x≠0,a≠0)在x=1處的切線與直線(e2-1)x-y+2016=0平行.
(1)討論y=f(x)的單調(diào)性;
(2)若kf(s)≥t ln t在s∈(0,+∞),t∈(1,e]上恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.遞增數(shù)列{an}滿足2an=an-1+an+1,(n∈N*,n>1),其前n項(xiàng)和為Sn,a2+a8=6,a4a6=8,則S10=35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求下列函數(shù)定義域:
(1)y=$\frac{1}{cosx+1}$;
(2)y=$\sqrt{2sinx+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.“a,b不相交”是“a,b異面”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.非充分非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)點(diǎn)P為有公共焦點(diǎn)F1,F(xiàn)2的橢圓和雙曲線的一個(gè)交點(diǎn),且cos∠F1PF2=$\frac{3}{5}$,橢圓的離心率為e1,雙曲線的離心率為e2,若e2=2e1,則e1=( 。
A.$\frac{\sqrt{10}}{4}$B.$\frac{\sqrt{7}}{5}$C.$\frac{\sqrt{7}}{4}$D.$\frac{\sqrt{10}}{5}$

查看答案和解析>>

同步練習(xí)冊答案