【題目】已知數(shù)列{an}滿足條件:a1=1,a2=r(r>0),且{anan+1}是公比為q(q>0)的等比數(shù)列,設bn=a2n1+a2n(n=1,2,…).
(1)求出使不等式anan+1+an+1an+2>an+2an+3(n∈N*)成立的q的取值范圍;
(2)求bn ,其中Sn=b1+b2+…+bn;
(3)設r=219.2﹣1,q= ,求數(shù)列{ }的最大項和最小項的值.

【答案】
(1)解:由題意得rqn1+rqn>rqn+1

由題設r>0,q>0,故從上式可得 q2﹣q﹣1<0,

∵q>0,故


(2)解:∵b1=1+r≠0,所以{bn}是首項為1+r,公比為q的等比數(shù)列,從而bn=(1+r)qn1

當q=1時,Sn=n(1+r), =0;

當0<q<1時 =

當q>1時, =0;


(3)解:從上式可知,設f(n)=

當n>21時,f(n)遞減,∴f(n)≤f(21),∴f(n)max=2 25;

當n≤20時,f(n)遞減,∴f(n)≥f(20),f(n)min=﹣4

∴當n=21時,數(shù)列{ }有最大值2 25;當n=20時,數(shù)列{ }有最小值﹣4.


【解析】(1)利用數(shù)列{an}滿足條件:a1=1,a2=r(r>0),且{anan+1}是公比為q(q>0)的等比數(shù)列,可得公比的不等式,故可求q的取值范圍;(2)先考慮相鄰項的關系,可知比值為常數(shù),故可知數(shù)列是等比數(shù)列,由于公比不定,故要進行分類討論;(3)先求數(shù)列{ }的通項,再利用單調性,研究其最值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和是Sn , 則下列四個命題中,錯誤的是(
A.若數(shù)列{an}是公差為d的等差數(shù)列,則數(shù)列{ }的公差為 的等差數(shù)列
B.若數(shù)列{ }是公差為d的等差數(shù)列,則數(shù)列{an}是公差為2d的等差數(shù)列
C.若數(shù)列{an}是等差數(shù)列,則數(shù)列的奇數(shù)項,偶數(shù)項分別構成等差數(shù)列
D.若數(shù)列{an}的奇數(shù)項,偶數(shù)項分別構成公差相等的等差數(shù)列,則{an}是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】4月23日是世界讀書日,為提高學生對讀書的重視,讓更多的人暢游于書海中,從而收獲更多的知識,某高中的校學生會開展了主題為“讓閱讀成為習慣,讓思考伴隨人生”的實踐活動,校學生會實踐部的同學隨即抽查了學校的40名高一學生,通過調查它們是喜愛讀紙質書還是喜愛讀電子書,來了解在校高一學生的讀書習慣,得到如表列聯(lián)表:

喜歡讀紙質書

不喜歡讀紙質書

合計

16

4

20

8

12

20

合計

24

16

40

(Ⅰ)根據(jù)如表,能否有99%的把握認為是否喜歡讀紙質書籍與性別有關系?
(Ⅱ)從被抽查的16名不喜歡讀紙質書籍的學生中隨機抽取2名學生,求抽到男生人數(shù)ξ的分布列及其數(shù)學期望E(ξ).
參考公式:K2= ,其中n=a+b+c+d.
下列的臨界值表供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中,動點P在其表面上運動,且|PA|=x,把點的軌跡長度L=f(x)稱為“喇叭花”函數(shù),給出下列結論: ① ;② ;③ ;④
其中正確的結論是: . (填上你認為所有正確的結論序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=logax當x>2 時恒有|y|>1,則a的取值范圍是(
A.
B.
C.1<a≤2
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若向量 ,在函數(shù) 的圖象中,對稱中心到對稱軸的最小距離為 ,且當 的最大值為1.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內接正多邊形的邊數(shù)無限增加時,多邊形的面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”.利用“割圓術”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,其中n表示圓內接正多邊形的邊數(shù),執(zhí)行此算法輸出的圓周率的近似值依次為(參考數(shù)據(jù): ≈1.732,sin15°≈0.2588,sin75°≈0.1305)(
A.2.598,3,3.1048
B.2.598,3,3.1056
C.2.578,3,3.1069
D.2.588,3,3.1108

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某市擬在長為8km的道路OP的一側修建一條運動賽道,賽道的前一部分為曲線段OSM,該曲線段為函數(shù)y=Asinωx(A>0,ω>0)x∈[0,4]的圖象,且圖象的最高點為 ;賽道的后一部分為折線段MNP,為保證參賽運動員的安全,限定∠MNP=120°
(1)求A,ω的值和M,P兩點間的距離;
(2)應如何設計,才能使折線段賽道MNP最長?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的右焦點與拋物線y2=4x的焦點F重合,且橢圓的離心率是 ,如圖所示.

(1)求橢圓的標準方程;
(2)拋物線的準線與橢圓在第二象限相交于點A,過點A作拋物線的切線l,l與橢圓的另一個交點為B,求線段AB的長.

查看答案和解析>>

同步練習冊答案