如圖,在四棱錐
中,底面
是正方形,
,
分別為
的中點,且
.
(1)求證:
;
(2)求異面直線
所成的角的余弦值
試題分析:(1)取
,
,
(2)取AB中點F,則
,
,
.
點評:證明線面平行,可以利用線面平行的判定定理,也可以先證明面面平行,再證明線面平行;求兩條異面直線所成的角,關鍵是作出兩條異面直線所成的角再求解,還要注意兩條異面直線所成的角的取值范圍為
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在三棱柱ABC-A
1B
1C
1中,AA
1C
1C是邊長為4的正方形.平面ABC⊥平面AA
1C
1C,AB=3,BC=5.
(Ⅰ)求證:AA
1⊥平面ABC;
(Ⅱ)求二面角A
1-BC
1-B
1的余弦值;
(Ⅲ)證明:在線段BC
1存在點D,使得AD⊥A
1B,并求
的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知命題
,
為直線,
為平面,若
∥
,
,則
∥
;命題
若
,則
,則下列命題為真命題的是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,幾何體
中,四邊形
為菱形,
,
,面
∥面
,
、
、
都垂直于面
,且
,
為
的中點.
(Ⅰ)求證:
為等腰直角三角形;
(Ⅱ)求證:
∥面
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
用
、
、
表示三條不同的直線,
表示平面,給出下列命題:
①若
∥
,
∥
,則
∥
; ②若
⊥
,
⊥
,則
⊥
;
③若
∥
,
∥
,則
∥
; ④若
⊥
,
⊥
,則
∥
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在多面體
中,四邊形
是邊長為2的正方形,平面
平面
,平面
都與平面
垂直,且
、
、
都是正三角形。
(1)求證:
;
(2)求多面體
的體積。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在直三棱柱
中,
平面
,其垂足
落在直線
上.
(1)求證:
;
(2)若
,
,
為
的中點,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
下列命題中假命題是
A.若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行 |
B.垂直于同一條直線的兩條直線相互垂直 |
C.若一個平面經過另一個平面的垂線,那么這兩個平面相互垂直 |
D.若一個平面內的兩條相交直線與另一個平面內的相交直線分別平行,那么這兩個平面相互平行 |
查看答案和解析>>