如圖,幾何體
中,四邊形
為菱形,
,
,面
∥面
,
、
、
都垂直于面
,且
,
為
的中點.
(Ⅰ)求證:
為等腰直角三角形;
(Ⅱ)求證:
∥面
.
(1)根據(jù)邊長和勾股定理來證明即可
(2)要證明線面平行,則要結(jié)合判定定理來加以證明即可。
試題分析:解:(I)連接
,交
于
,因為四邊形
為菱形,
,所以
因為
、
都垂直于面
,
又面
∥面
,
所以四邊形
為平行四邊形 ,則
2分
因為
、
、
都垂直于面
,則
4分
所以
所以
為等腰直角三角形 6分
(II)取
的中點
,連接
、
(略)
點評:主要是考查了線面平行以及線線垂直的證明,屬于中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在直三棱柱(即側(cè)棱與底面垂直的三棱柱)
中,
(I)若
為
的中點,求證:平面
平面
;
(II)若
為線段
上一點,且二面角
的大小為
,試確定
的位置.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在四棱柱
(1)當正視方向與向量
的方向相同時,畫出四棱錐
的正視圖(要求標出尺寸,并寫出演算過程);
(2)若M為PA的中點,求證:求二面角
(3)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知三棱錐
的側(cè)棱
兩兩垂直,且
,
,
是
的中點.
(1)求異面直線
與
所成的角的余弦值
(2)求二面角
的余弦值
(3)
點到面
的距離
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD, AB//CD,∠DAB=90°,PA=AD=DC=1,AB=2,M為PB的中點.
(I)證明:MC//平面PAD;
(II)求直線MC與平面PAC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖所示,正方體
的棱長為1,
分別為線段
上的動點,則三棱錐
的體積為________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在四棱錐
中,底面
是正方形,
,
分別為
的中點,且
.
(1)求證:
;
(2)求異面直線
所成的角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
是不同的兩條直線,
是不重合的兩個平面,則下列命題中為真命題的是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在四棱錐
中,底面
是矩形,
分別為
的中點,
,且
(1)證明:
;
(2)求二面角
的余弦值。
查看答案和解析>>